DP Mathematics HL Questionbank
The greatest common divisor, gcd(\(a\),\(b\)), and the least common multiple, lcm(\(a\),\(b\)), of integers \(a\) and \(b\).
Path: |
Description
[N/A]Directly related questions
- 18M.3dm.hl.TZ0.4b.ii: State the value of \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right)\) for even positive...
- 18M.3dm.hl.TZ0.4b.i: State the value of \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right)\) for odd positive integers \(k\).
- 18M.3dm.hl.TZ0.4a: Show that...
- 12M.3dm.hl.TZ0.1a: Use the Euclidean algorithm to express gcd (123, 2347) in the form 123p + 2347q, where...
- 11M.3dm.hl.TZ0.1a: Use the Euclidean algorithm to find the greatest common divisor of the numbers 56 and 315.
- 11M.3dm.hl.TZ0.5b: (i) State the fundamental theorem of arithmetic. (ii) The positive integers M and N have...
- 14M.3dm.hl.TZ0.2a: Consider the integers \(a = 871\) and \(b= 1157\), given in base \(10\). (i) Express...
- 15M.3dm.hl.TZ0.5b: Use the Fundamental theorem of arithmetic, applied to \(5577\) and \(99\,099\), to calculate...
- 15M.3dm.hl.TZ0.5c: Prove that \(\gcd (n,{\text{ }}m) \times {\text{lcm}}(n,{\text{ }}m) = n \times m\) for all...
- 14N.3dm.hl.TZ0.1b: Use the Euclidean algorithm to find (i) \(\gcd \left( {f(3),{\text{ }}f(4)} \right)\); (ii)...