DP Mathematics HL Questionbank

The greatest common divisor, gcd(a,b), and the least common multiple, lcm(a,b), of integers a and b.
Path: |
Description
[N/A]Directly related questions
- 18M.3dm.hl.TZ0.4b.ii: State the value of gcd(4k+2,3k+1) for even positive...
- 18M.3dm.hl.TZ0.4b.i: State the value of gcd(4k+2,3k+1) for odd positive integers k.
- 18M.3dm.hl.TZ0.4a: Show that...
- 12M.3dm.hl.TZ0.1a: Use the Euclidean algorithm to express gcd (123, 2347) in the form 123p + 2347q, where...
- 11M.3dm.hl.TZ0.1a: Use the Euclidean algorithm to find the greatest common divisor of the numbers 56 and 315.
- 11M.3dm.hl.TZ0.5b: (i) State the fundamental theorem of arithmetic. (ii) The positive integers M and N have...
- 14M.3dm.hl.TZ0.2a: Consider the integers a=871 and b=1157, given in base 10. (i) Express...
- 15M.3dm.hl.TZ0.5b: Use the Fundamental theorem of arithmetic, applied to 5577 and 99099, to calculate...
- 15M.3dm.hl.TZ0.5c: Prove that gcd(n, m)×lcm(n, m)=n×m for all...
- 14N.3dm.hl.TZ0.1b: Use the Euclidean algorithm to find (i) gcd(f(3), f(4)); (ii)...