Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2009 Marks available 6 Reference code 09M.1.hl.TZ1.8
Level HL only Paper 1 Time zone TZ1
Command term Show that Question number 8 Adapted from N/A

Question

A triangle has vertices A(1, −1, 1), B(1, 1, 0) and C(−1, 1, −1) .

Show that the area of the triangle is 6 .

Markscheme

METHOD 1

for finding two of the following three vectors (or their negatives)

AB=(021), AC=(222), BC=(201)     (A1)(A1)

and calculating 

EITHER

AB×AC=|ijk021222|=(224)     M1A1

area ΔABC=12|AB×AC|     M1

OR

BA×BC=|ijk021201|=(224)     M1A1

area ΔABC=12|BA×BC|     M1

OR

CA×CB=|ijk222201|=(224)     M1A1

area ΔABC=12|CA×CB|     M1

THEN

area ΔABC=242     A1

=6     AG     N0

METHOD 2

for finding two of the following three vectors (or their negatives)

AB=(021), AC=(222), BC=(201)     (A1)(A1)

EITHER

cosA=ABAC|AB||AC|     M1

=6512=660 (or 315)

sinA=25     A1

area ΔABC=12|AB||AC|sinA     M1

=1251225

=1224     A1

=6     AG     N0

OR

cosB=BABC|BA||BC|     M1

=155=15

sinB=2425 (or 245)     A1

area ΔABC=12|BA||BC|sinB     M1

=12552425

=1224     A1

=6     AG     N0

OR

cosC=CACB|CA||CB|     M1

=6125=660 (or 315)

sinC=25     A1

area ΔABC=12|CA||CB|sinC     M1

=1212525

=1224     A1

=6     AG     N0

METHOD 3

for finding two of the following three vectors (or their negatives)

AB=(021), AC=(222), BC=(201)     (A1)(A1)

AB=5=c , AC=12=23=b , BC=5=a     M1A1

s=5+23+52=3+5     M1

area ΔABC=s(sa)(sb)(sc)

=(3+5)(3)(53)(3)

=3(53)     A1

=6     AG     N0

METHOD 4

for finding two of the following three vectors (or their negatives)

AB=(021), AC=(222), BC=(201)     (A1)(A1)

AB=BC=5 and AC=12=23     M1A1

ΔABC is isosceles

let M be the midpoint of [AC] , the height BM=53=2     M1

area ΔABC=23×22     A1

=6     AG     N0

[6 marks]

Examiners report

This question was answered fairly well by most candidates using a diversity of approaches.

Syllabus sections

Topic 4 - Core: Vectors » 4.5
Show 24 related questions

View options