User interface language: English | Español

Date May 2009 Marks available 6 Reference code 09M.1.hl.TZ1.8
Level HL only Paper 1 Time zone TZ1
Command term Show that Question number 8 Adapted from N/A

Question

A triangle has vertices A(1, −1, 1), B(1, 1, 0) and C(−1, 1, −1) .

Show that the area of the triangle is \(\sqrt 6 \) .

Markscheme

METHOD 1

for finding two of the following three vectors (or their negatives)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}}
  0 \\
  2 \\
  { - 1}
\end{array}} \right)\), \(\overrightarrow {{\text{AC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  2 \\
  { - 2}
\end{array}} \right)\), \(\overrightarrow {{\text{BC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  0 \\
  { - 1}
\end{array}} \right)\)     (A1)(A1)

and calculating 

EITHER

\(\overrightarrow {{\text{AB}}}  \times \overrightarrow {{\text{AC}}}  = \left| {\begin{array}{*{20}{c}}
  i&j&k \\
  0&2&{ - 1} \\
  { - 2}&2&{ - 2}
\end{array}} \right| = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  2 \\
  4
\end{array}} \right)\)     M1A1

area \(\Delta {\text{ABC}} = \frac{1}{2}\left| {\overrightarrow {{\text{AB}}}  \times \overrightarrow {{\text{AC}}} } \right|\)     M1

OR

\(\overrightarrow {{\text{BA}}}  \times \overrightarrow {{\text{BC}}}  = \left| {\begin{array}{*{20}{c}}
  i&j&k \\
  0&{ - 2}&1 \\
  { - 2}&0&{ - 1}
\end{array}} \right| = \left( {\begin{array}{*{20}{c}}
  2 \\
  { - 2} \\
  { - 4}
\end{array}} \right)\)     M1A1

area \(\Delta {\text{ABC}} = \frac{1}{2}\left| {\overrightarrow {{\text{BA}}}  \times \overrightarrow {{\text{BC}}} } \right|\)     M1

OR

\(\overrightarrow {{\text{CA}}}  \times \overrightarrow {{\text{CB}}}  = \left| {\begin{array}{*{20}{c}}
  i&j&k \\
  2&{ - 2}&2 \\
  2&0&1
\end{array}} \right| = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  2 \\
  4
\end{array}} \right)\)     M1A1

area \(\Delta {\text{ABC}} = \frac{1}{2}\left| {\overrightarrow {{\text{CA}}}  \times \overrightarrow {{\text{CB}}} } \right|\)     M1

THEN

area \(\Delta {\text{ABC}} = \frac{{\sqrt {24} }}{2}\)     A1

\( = \sqrt 6 \)     AG     N0

METHOD 2

for finding two of the following three vectors (or their negatives)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}}
  0 \\
  2 \\
  { - 1}
\end{array}} \right)\), \(\overrightarrow {{\text{AC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  2 \\
  { - 2}
\end{array}} \right)\), \(\overrightarrow {{\text{BC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  0 \\
  { - 1}
\end{array}} \right)\)     (A1)(A1)

EITHER

\(\cos A = \frac{{\overrightarrow {{\text{AB}}}  \cdot \overrightarrow {{\text{AC}}} }}{{\left| {\overrightarrow {{\text{AB}}} } \right|\left| {\overrightarrow {{\text{AC}}} } \right|}}\)     M1

\( = \frac{6}{{\sqrt 5 \sqrt {12} }} = \frac{6}{{\sqrt {60} }}{\text{ }}\left( {{\text{or }}\frac{3}{{\sqrt {15} }}} \right)\)

\(\sin A = \sqrt {\frac{2}{5}} \)     A1

area \(\Delta {\text{ABC}} = \frac{1}{2}\left| {\overrightarrow {{\text{AB}}} } \right|\left| {\overrightarrow {{\text{AC}}} } \right|\sin A\)     M1

\( = \frac{1}{2}\sqrt 5 \sqrt {12} \sqrt {\frac{2}{5}} \)

\( = \frac{1}{2}\sqrt {24} \)     A1

\( = \sqrt 6 \)     AG     N0

OR

\(\cos B = \frac{{\overrightarrow {{\text{BA}}}  \cdot \overrightarrow {{\text{BC}}} }}{{\left| {\overrightarrow {{\text{BA}}} } \right|\left| {\overrightarrow {{\text{BC}}} } \right|}}\)     M1

\( = - \frac{1}{{\sqrt 5 \sqrt 5 }} = - \frac{1}{5}\)

\(\sin B = \sqrt {\frac{{24}}{{25}}} {\text{ }}\left( {{\text{or }}\frac{{\sqrt {24} }}{5}} \right)\)     A1

area \(\Delta {\text{ABC}} = \frac{1}{2}\left| {\overrightarrow {{\text{BA}}} } \right|\left| {\overrightarrow {{\text{BC}}} } \right|\sin B\)     M1

\( = \frac{1}{2}\sqrt 5 \sqrt 5 \sqrt {\frac{{24}}{{25}}} \)

\( = \frac{1}{2}\sqrt {24} \)     A1

\( = \sqrt 6 \)     AG     N0

OR

\(\cos C = \frac{{\overrightarrow {{\text{CA}}}  \cdot \overrightarrow {{\text{CB}}} }}{{\left| {\overrightarrow {{\text{CA}}} } \right|\left| {\overrightarrow {{\text{CB}}} } \right|}}\)     M1

\( = \frac{6}{{\sqrt {12} \sqrt 5 }} = \frac{6}{{\sqrt {60} }}{\text{ }}\left( {{\text{or }}\frac{3}{{\sqrt {15} }}} \right)\)

\(\sin C = \sqrt {\frac{2}{5}} \)     A1

area \(\Delta {\text{ABC}} = \frac{1}{2}\left| {\overrightarrow {{\text{CA}}} } \right|\left| {\overrightarrow {{\text{CB}}} } \right|\sin C\)     M1

\( = \frac{1}{2}\sqrt {12} \sqrt 5 \sqrt {\frac{2}{5}} \)

\( = \frac{1}{2}\sqrt {24} \)     A1

\( = \sqrt 6 \)     AG     N0

METHOD 3

for finding two of the following three vectors (or their negatives)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}}
  0 \\
  2 \\
  { - 1}
\end{array}} \right)\), \(\overrightarrow {{\text{AC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  2 \\
  { - 2}
\end{array}} \right)\), \(\overrightarrow {{\text{BC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  0 \\
  { - 1}
\end{array}} \right)\)     (A1)(A1)

\({\text{AB}} = \sqrt 5 = c\) , \({\text{AC}} = \sqrt {12}  = 2\sqrt 3 = b\) , \({\text{BC}} = \sqrt 5 = a\)     M1A1

\(s = \frac{{\sqrt 5  + 2\sqrt 3  + \sqrt 5 }}{2} = \sqrt 3  + \sqrt 5 \)     M1

area \(\Delta {\text{ABC}} = \sqrt {s(s - a)(s - b)(s - c)} \)

\( = \sqrt {(\sqrt 3  + \sqrt 5 )(\sqrt 3 )(\sqrt 5  - \sqrt 3 )(\sqrt 3 )} \)

\( = \sqrt {3(5 - 3)} \)     A1

\( = \sqrt 6 \)     AG     N0

METHOD 4

for finding two of the following three vectors (or their negatives)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}}
  0 \\
  2 \\
  { - 1}
\end{array}} \right)\), \(\overrightarrow {{\text{AC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  2 \\
  { - 2}
\end{array}} \right)\), \(\overrightarrow {{\text{BC}}}  = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  0 \\
  { - 1}
\end{array}} \right)\)     (A1)(A1)

\({\text{AB}} = {\text{BC}} = \sqrt 5 \) and \({\text{AC}} = \sqrt {12}  = 2\sqrt 3 \)     M1A1

\(\Delta {\text{ABC}}\) is isosceles

let M be the midpoint of [AC] , the height \({\text{BM}} = \sqrt {5 - 3} = \sqrt 2 \)     M1

area \(\Delta {\text{ABC}} = \frac{{2\sqrt 3  \times \sqrt 2 }}{2}\)     A1

\( = \sqrt 6 \)     AG     N0

[6 marks]

Examiners report

This question was answered fairly well by most candidates using a diversity of approaches.

Syllabus sections

Topic 4 - Core: Vectors » 4.5
Show 24 related questions

View options