Date | May 2017 | Marks available | 4 | Reference code | 17M.2.hl.TZ2.7 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Prove that | Question number | 7 | Adapted from | N/A |
Question
Given that a \( \times \) b \( = \) b \( \times \) c \( \ne \) 0 prove that a \( + \) c \( = \) sb where s is a scalar.
Markscheme
METHOD 1
a \( \times \) b = b \( \times \) c
(a \( \times \) b) \( - \) (b \( \times \) c) = 0
(a \( \times \) b) + (c \( \times \) b) = 0 M1A1
(a + c) \( \times \) b = 0 A1
(a + c) is parallel to b \( \Rightarrow \) a + c = sb R1AG
Note: Condone absence of arrows, underlining, or other otherwise “correct” vector notation throughout this question.
Note: Allow “is in the same direction to”, for the final R mark.
METHOD 2
a \( \times \) b = b \( \times \) c \( \Rightarrow \left( {\begin{array}{*{20}{c}} {{a_2}{b_3} - {a_3}{b_2}} \\ {{a_3}{b_1} - {a_1}{b_3}} \\ {{a_1}{b_2} - {a_2}{b_1}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{b_2}{c_3} - {b_3}{c_2}} \\ {{b_3}{c_1} - {b_1}{c_3}} \\ {{b_1}{c_2} - {b_2}{c_1}} \end{array}} \right)\) M1A1
\({a_2}{b_3} - {a_3}{b_2} = {b_2}{c_3} - {b_3}{c_2} \Rightarrow {b_3}({a_2} + {c_2}) = {b_2}({a_3} + {c_3})\)
\({a_3}{b_1} - {a_1}{b_3} = {b_3}{c_1} - {b_1}{c_3} \Rightarrow {b_1}({a_3} + {c_3}) = {b_3}({a_1} + {c_1})\)
\({a_1}{b_2} - {a_2}{b_1} = {b_1}{c_2} - {b_2}{c_1} \Rightarrow {b_2}({a_1} + {c_1}) = {b_1}({a_2} + {c_2})\)
\(\frac{{({a_1} + {c_1})}}{{{b_1}}} = \frac{{({a_2} + {c_2})}}{{{b_2}}} = \frac{{({a_3} + {c_3})}}{{{b_3}}} = s\) A1
\( \Rightarrow {a_1} + {c_1} = s{b_1}\)
\( \Rightarrow {a_2} + {c_2} = s{b_2}\)
\( \Rightarrow {a_3} + {c_3} = s{b_3}\)
\( \Rightarrow \left( {\begin{array}{*{20}{c}} {{a_1}} \\ {{a_2}} \\ {{a_3}} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {{c_1}} \\ {{c_2}} \\ {{c_3}} \end{array}} \right) = s\left( {\begin{array}{*{20}{c}} {{b_1}} \\ {{b_2}} \\ {{b_3}} \end{array}} \right)\) A1
\( \Rightarrow \) a + c = sb AG
[4 marks]