User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.1.hl.TZ1.5
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 5 Adapted from N/A

Question

ABCD is a parallelogram, where \(\overrightarrow {{\text{AB}}} \) = –i + 2j + 3k and \(\overrightarrow {{\text{AD}}} \) = 4ij – 2k.

Find the area of the parallelogram ABCD.

[3]
a.

By using a suitable scalar product of two vectors, determine whether \({\rm{A\hat BC}}\) is acute or obtuse.

[4]
b.

Markscheme

\(\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AD}}} = - \)i \( + 10\)j – 7k     M1A1

\({\text{area}} = \left| {\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AD}}} } \right|{\text{ = }}\sqrt {{1^2} + {{10}^2} + {7^2}} \)

 \( = 5\sqrt 6 \left( {\sqrt {150} } \right)\)     A1

[3 marks]

a.

METHOD 1

\(\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AD}}} = - 4 - 2 - 6\)     M1A1

\( = - 12\)

considering the sign of the answer

\(\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AD}}} < 0\), therefore angle \({\rm{D\hat AB}}\) is obtuse     M1

(as it is a parallelogram), \({\rm{A\hat BC}}\) is acute     A1

[4 marks]

METHOD 2

\(\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{BC}}} = + 4 + 2 + 6\)     M1A1

\( = 12\) considering the sign of the answer     M1

\(\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{BC}}} > 0 \Rightarrow {\rm{A\hat BC}}\) is acute     A1

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4 - Core: Vectors » 4.5

View options