User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Find and Express Question number 4 Adapted from N/A

Question

The set of all permutations of the list of the integers 1, 2, 3  4 is a group, S4, under the operation of function composition.

In the group S4 let \({p_1} = \left( \begin{gathered}
\begin{array}{*{20}{c}}
1&2&3&4
\end{array} \hfill \\
\begin{array}{*{20}{c}}
2&3&1&4
\end{array} \hfill \\
\end{gathered} \right)\) and \({p_2} = \left( \begin{gathered}
\begin{array}{*{20}{c}}
1&2&3&4
\end{array} \hfill \\
\begin{array}{*{20}{c}}
2&1&3&4
\end{array} \hfill \\
\end{gathered} \right)\).

Determine the order of S4.

[2]
a.

Find the proper subgroup H of order 6 containing \({p_1}\), \({p_2}\) and their compositions. Express each element of H in cycle form.

[5]
b.

Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\) for \(p \in {S_4}\).

Using \({p_1}\) and \({p_2}\), explain why \(f\) is not a homomorphism.

[5]
c.

Markscheme

number of possible permutations is 4 × 3 × 2 × 1       (M1)

= 24(= 4!)      A1

[2 marks]

a.

attempting to find one of \({p_1} \circ {p_1}\), \({p_1} \circ {p_2}\) or \({p_2} \circ {p_1}\)     M1

\({p_1} \circ {p_1} = \left( {132} \right)\) or equivalent (eg, \({p_1}^{ - 1} = \left( {132} \right)\))    A1

\( {p_1} \circ {p_2} = \left( {13} \right)\) or equivalent (eg, \({p_2} \circ {p_1} \circ {p_1} = \left( {13} \right)\))    A1

\({p_2} \circ {p_1} = \left( {23} \right)\) or equivalent (eg, \({p_1} \circ {p_1} \circ {p_2} = \left( {23} \right)\))    A1

Note: Award A1A0A0 for one correct permutation in any form; A1A1A0 for two correct permutations in any form.

\(e = \left( 1 \right)\), \({p_1} = \left( {123} \right)\) and \({p_2} = \left( {12} \right)\)     A1

Note: Condone omission of identity in cycle form as long as it is clear it is considered one of the elements of H.

[5 marks]

b.

METHOD 1

if \(f\) is a homomorphism \(f\left( {{p_1} \circ {p_2}} \right) = f\left( {{p_1}} \right) \circ f\left( {{p_2}} \right)\)

attempting to express one of \(f\left( {{p_1} \circ {p_2}} \right)\) or \(f\left( {{p_1}} \right) \circ f\left( {{p_2}} \right)\) in terms of \({p_1}\) and \({p_2}\)      M1

\(f\left( {{p_1} \circ {p_2}} \right) = {p_1} \circ {p_2} \circ {p_1} \circ {p_2}\)     A1

\(f\left( {{p_1}} \right) \circ f\left( {{p_2}} \right) = {p_1} \circ {p_1} \circ {p_2} \circ {p_2}\)     A1

\( \Rightarrow {p_2} \circ {p_1} = {p_1} \circ {p_2}\)     A1

but \({p_1} \circ {p_2} \ne {p_2} \circ {p_1}\)     R1

so \(f\) is not a homomorphism     AG

Note: Award R1 only if M1 is awarded.

Note: Award marks only if \({p_1}\) and \({p_2}\) are used; cycle form is not required.

 

METHOD 2

if \(f\) is a homomorphism \(f\left( {{p_1} \circ {p_2}} \right) = f\left( {{p_1}} \right) \circ f\left( {{p_2}} \right)\)

attempting to find one of \(f\left( {{p_1} \circ {p_2}} \right)\) or \(f\left( {{p_1}} \right) \circ f\left( {{p_2}} \right)\)      M1

\(f\left( {{p_1} \circ {p_2}} \right) = e\)     A1

\(f\left( {{p_1}} \right) \circ f\left( {{p_2}} \right) = \left( {132} \right)\)     (M1)A1

so \(f\left( {{p_1} \circ {p_2}} \right) \ne f\left( {{p_1}} \right) \circ f\left( {{p_2}} \right)\)     R1

so \(f\) is not a homomorphism     AG

Note: Award R1 only if M1 is awarded.

Note: Award marks only if \({p_1}\) and \({p_2}\) are used; cycle form is not required.

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.10 » Permutations under composition of permutations.

View options