Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Find and Express Question number 4 Adapted from N/A

Question

The set of all permutations of the list of the integers 1, 2, 3  4 is a group, S4, under the operation of function composition.

In the group S4 let p1=(12342314) and p2=(12342134).

Determine the order of S4.

[2]
a.

Find the proper subgroup H of order 6 containing p1, p2 and their compositions. Express each element of H in cycle form.

[5]
b.

Let f:S4S4 be defined by f(p)=pp for pS4.

Using p1 and p2, explain why f is not a homomorphism.

[5]
c.

Markscheme

number of possible permutations is 4 × 3 × 2 × 1       (M1)

= 24(= 4!)      A1

[2 marks]

a.

attempting to find one of p1p1p1p2 or p2p1     M1

p1p1=(132) or equivalent (egp11=(132))    A1

p1p2=(13) or equivalent (eg, p2p1p1=(13))    A1

p2p1=(23) or equivalent (eg, p1p1p2=(23))    A1

Note: Award A1A0A0 for one correct permutation in any form; A1A1A0 for two correct permutations in any form.

e=(1)p1=(123) and p2=(12)     A1

Note: Condone omission of identity in cycle form as long as it is clear it is considered one of the elements of H.

[5 marks]

b.

METHOD 1

if f is a homomorphism f(p1p2)=f(p1)f(p2)

attempting to express one of f(p1p2) or f(p1)f(p2) in terms of p1 and p2      M1

f(p1p2)=p1p2p1p2     A1

f(p1)f(p2)=p1p1p2p2     A1

p2p1=p1p2     A1

but p1p2p2p1     R1

so f is not a homomorphism     AG

Note: Award R1 only if M1 is awarded.

Note: Award marks only if p1 and p2 are used; cycle form is not required.

 

METHOD 2

if f is a homomorphism f(p1p2)=f(p1)f(p2)

attempting to find one of f(p1p2) or f(p1)f(p2)      M1

f(p1p2)=e     A1

f(p1)f(p2)=(132)     (M1)A1

so f(p1p2)f(p1)f(p2)     R1

so f is not a homomorphism     AG

Note: Award R1 only if M1 is awarded.

Note: Award marks only if p1 and p2 are used; cycle form is not required.

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.10 » Permutations under composition of permutations.

View options