User interface language: English | Español

Date May 2010 Marks available 13 Reference code 10M.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Determine, Find, and State Question number 4 Adapted from N/A

Question

The permutation \({p_1}\) of the set {1, 2, 3, 4} is defined by

\[{p_1} = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&4&1&3
\end{array}} \right)\]

(a)     (i)     State the inverse of \({p_1}\).

  (ii)     Find the order of \({p_1}\).

(b)     Another permutation \({p_2}\) is defined by

\[{p_2} = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  3&2&4&1
\end{array}} \right)\]

  (i)     Determine whether or not the composition of \({p_1}\) and \({p_2}\) is commutative.

  (ii)     Find the permutation \({p_3}\) which satisfies

\[{p_1}{p_3}{p_2} = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  1&2&3&4
\end{array}} \right){\text{.}}\]

Markscheme

(a)     (i)     the inverse is

\(\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  3&1&4&2
\end{array}} \right)\)     A1

 

(ii)     EITHER

\(1 \to 2 \to 4 \to 3 \to 1\) (is a cycle of length 4)     R3

so \({p_1}\) is of order 4     A1     N2

OR

consider

\(p_1^2 = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  4&3&1&2
\end{array}} \right)\)     M1A1

it is now clear that

\(p_1^4 = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  1&2&3&4
\end{array}} \right)\)     A1

so \({p_1}\) is of order 4     A1     N2

[5 marks]

 

(b)     (i)     consider

\({p_1}{p_2} = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&4&1&3
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  3&2&4&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  1&4&3&2
\end{array}} \right)\)     M1A1

\({p_2}{p_1} = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  3&2&4&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&4&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&1&3&4
\end{array}} \right)\)     A1

composition is not commutative     A1

Note: In this part do not penalize candidates who incorrectly reverse the order both times.

 

(ii)     EITHER

pre and postmultiply by \(p_1^{ - 1}\), \(p_2^{ - 1}\)to give

\({p_3} = p_1^{ - 1}p_2^{ - 1}\)     (M1)(A1)

\( = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  3&1&4&2
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  4&2&1&3
\end{array}} \right)\)     A1

\( = \left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&1&3&4
\end{array}} \right)\)     A1

OR

starting from

\(\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&4&1&3
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  {}&{}&{}&{}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  3&2&4&1
\end{array}} \right)\)     M1

successively deducing each missing number, to get

\(\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&4&1&3
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  2&1&3&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  1&2&3&4 \\
  3&2&4&1
\end{array}} \right)\)     A3

[8 marks]

Total [13 marks]

Examiners report

Many candidates scored well on this question although some gave the impression of not having studied this topic. The most common error in (b) was to believe incorrectly that \({p_1}{p_2}\) means \({p_1}\) followed by \({p_2}\). This was condoned in (i) but penalised in (ii). The Guide makes it quite clear that this is the notation to be used.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.10 » Permutations under composition of permutations.

View options