User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.3dm.hl.TZ0.5
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Write down and Find Question number 5 Adapted from N/A

Question

The Fibonacci sequence can be described by the recurrence relation fn+2=fn+1+fnfn+2=fn+1+fn where f0=0,f1=1f0=0,f1=1.

Write down the auxiliary equation and use it to find an expression for fnfn in terms of nn.

[7]
a.

It is known that α2=α+1α2=α+1 where α=1+52α=1+52.

For integers nn ≥ 3, use strong induction on the recurrence relation fn+2=fn+1+fnfn+2=fn+1+fn to prove that fn>αn2fn>αn2.

[8]
b.

Markscheme

attempt to find the auxiliary equation (λ2λ1=0λ2λ1=0)     M1

λ=1±52λ=1±52     (A1)

the general solution is fn=A(1+52)n+B(152)nfn=A(1+52)n+B(152)n    (M1)      

imposing initial conditions (substituting nn = 0,1)     M1

A + B = 0 and A(1+52)+B(152)=1A(1+52)+B(152)=1       A1

A=15,B=15A=15,B=15     A1

fn=15(1+52)n15(152)nfn=15(1+52)n15(152)n     A1

Note: Condone use of decimal numbers rather than exact answers.

[7 marks]

a.

let P(nn) be fn>αn2fn>αn2 for integers nn ≥ 3

consideration of two consecutive values of ff     R1

f3=2f3=2 and α32=1+52(1.618)P(3)α32=1+52(1.618)P(3) is true     A1

f4=3f4=3 and α42=3+52(2.618)P(4)α42=3+52(2.618)P(4) is true    A1

Note: Do not award A marks for values of nn other than nn = 3 and nn = 4.

(for kk ≥ 4), assume that P(kk) and P(kk − 1) are true     M1

required to prove that P(kk + 1) is true

Note: Accept equivalent notation. Needs to start with 2 general consecutive integers and then prove for the next integer. This will affect the powers of the alphas.

fk+1=fk+fk1fk+1=fk+fk1 (and fk>αk2,fk1>αk3fk>αk2,fk1>αk3)    M1

fk+1>αk2+αk3=αk3(α+1)    A1

=αk3α2=αk1=α(k+1)2     A1

as P(3) and P(4) are true, and P(k) , P(k − 1) true ⇒ P(k + 1) true then P(k) is true for k ≥ 3 by strong induction      R1

Note: To obtain the final R1, at least five of the previous marks must have been awarded.

[8 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.11 » Recurrence relations. Initial conditions, recursive definition of a sequence.

View options