Date | November 2015 | Marks available | 1 | Reference code | 15N.3dm.hl.TZ0.2 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | Find | Question number | 2 | Adapted from | N/A |
Question
A recurrence relation is given by \({u_{n + 1}} + 2{u_n} + 1 = 0,{\text{ }}{u_1} = 4\).
Use the recurrence relation to find \({u_2}\).
Find an expression for \({u_n}\) in terms of \(n\).
A second recurrence relation, where \({v_1} = {u_1}\) and \({v_2} = {u_2}\), is given by \({v_{n + 1}} + 2{v_n} + {v_{n - 1}} = 0,{\text{ }}n \ge 2\).
Find an expression for \({v_n}\) in terms of \(n\).
Markscheme
\({u_2} = - 9\) A1
[1 mark]
METHOD 1
\({u_{n + 1}} = - 2{u_n} - 1\)
let \({u_n} = a{( - 2)^n} + b\) M1A1
EITHER
\(a{( - 2)^{n + 1}} + b = - 2\left( {a{{( - 2)}^n} + b} \right) - 1\) M1
\(a{( - 2)^{n + 1}} + b = a{( - 2)^{n + 1}} - 2b - 1\)
\(3b = - 1\)
\(b = - \frac{1}{3}\) A1
\({u_1} = 4 \Rightarrow - 2a - \frac{1}{3} = 4\) (M1)
\( \Rightarrow a = - \frac{{13}}{6}\) A1
OR
using \({u_1} = 4,{\text{ }}{u_2} = - 9\)
\(4 = - 2a + b,{\text{ }} - 9 = 4a + b\) M1A1
solving simultaneously M1
\( \Rightarrow a = - \frac{{13}}{6},{\text{ and }}b = - \frac{1}{3}\) A1
THEN
so \({u_n} = - \frac{{13}}{6}{( - 2)^n} - \frac{1}{3}\)
METHOD 2
use of the formula \({u_n} = {a^n}{u_0} + b\left( {\frac{{1 - {a^n}}}{{1 - a}}} \right)\) (M1)
letting \({u_0} = - \frac{5}{2}\) A1
letting \(a = - 2\) and \(b = - 1\) A1
\({u_n} = - \frac{5}{2}{( - 2)^n} - 1\left( {\frac{{1 - {{( - 2)}^n}}}{{1 - - 2}}} \right)\) M1A1
\( = - \frac{{13}}{6}{( - 2)^n} - \frac{1}{3}\) A1
[6 marks]
auxiliary equation is \({k^2} + 2k + 1 = 0\) M1
hence \(k = - 1\) (A1)
so let \({v_n} = (an + b){( - 1)^n}\) M1
\((2a + b){( - 1)^2} = - 9\) and \((a + b){( - 1)^1} = 4\) A1
so \(a = - 5,{\text{ }}b = 1\) M1A1
\({v_n} = (1 - 5n){( - 1)^n}\)
Note: Caution necessary to allow FT from (a) to part (c).
[6 marks]
Total [13 marks]