Date | May 2014 | Marks available | 17 | Reference code | 14M.3dm.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | Express, Find, Hence, and Write down | Question number | 4 | Adapted from | N/A |
Question
(a) (i) Write down the general solution of the recurrence relation \({u_n} + 2{u_{n - 1}} = 0,{\text{ }}n \geqslant 1\).
(ii) Find a particular solution of the recurrence relation \({u_n} + 2{u_{n - 1}} = 3n - 2,{\text{ }}n \geqslant 1\), in the
form \({u_n} = An + B\), where \(A,{\text{ }}B \in \mathbb{Z}\).
(iii) Hence, find the solution to \({u_n} + 2{u_{n - 1}} = 3n - 2,{\text{ }}n \geqslant 1\) where \({u_1} = 7\).
(b) Find the solution of the recurrence relation \({u_n} = 2{u_{n - 1}} - 2{u_{n - 2}},{\text{ }}n \geqslant 2\), where \({u_0} = 2,{\text{ }}{u_1} = 2\). Express your solution in the form \({2^{f(n)}}\cos \left( {g(n)\pi } \right)\), where the functions f and g map \(\mathbb{N}\) to \(\mathbb{R}\).
Markscheme
(a) (i) use of auxiliary equation or recognition of a geometric sequence (M1)
\({u_n} = {( - 2)^n}{u_0}\) or \( = {\text{A}}{( - 2)^n}\) or \({u_1}{( - 2)^{n - 1}}\) A1
(ii) substitute suggested solution M1
\(An + B + 2\left( {A(n - 1) + B} \right) = 3n - 2\) A1
equate coefficients of powers of n and attempt to solve (M1)
\(A = 1,{\text{ }}B = 0\) A1
(so particular solution is \({u_n} = n\))
(iii) use of general solution = particular solution + homogeneous solution (M1)
\({u_n} = {\text{C}}{( - 2)^2} + n\) A1
attempt to find C using \({u_1} = 7\) M1
\({u_n} = - 3{( - 2)^n} + n\) A1
[10 marks]
(b) the auxiliary equation is \({r^2} - 2r + 2 = 0\) A1
solutions: \({r_1},{\text{ }}{r_2} = 1 \pm {\text{i}}\) A1
general solution of the recurrence: \({u_n} = {\text{A}}{(1 + {\text{i}})^n} + {\text{B}}{(1 - {\text{i}})^n}\) or trig form A1
attempt to impose initial conditions M1
\(A = B = 1\) or corresponding constants for trig form A1
\({u_n} = {2^{\left( {\frac{n}{2} + 1} \right)}} \times \cos \left( {\frac{{n\pi }}{4}} \right)\) A1A1
[7 marks]
Total [17 marks]