Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 17 Reference code 14M.3dm.hl.TZ0.4
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Express, Find, Hence, and Write down Question number 4 Adapted from N/A

Question

(a)     (i)     Write down the general solution of the recurrence relation un+2un1=0, n.

          (ii)     Find a particular solution of the recurrence relation {u_n} + 2{u_{n - 1}} = 3n - 2,{\text{ }}n \geqslant 1, in the

          form {u_n} = An + B, where A,{\text{ }}B \in \mathbb{Z}.

          (iii)     Hence, find the solution to {u_n} + 2{u_{n - 1}} = 3n - 2,{\text{ }}n \geqslant 1 where {u_1} = 7.

(b)     Find the solution of the recurrence relation {u_n} = 2{u_{n - 1}} - 2{u_{n - 2}},{\text{ }}n \geqslant 2, where {u_0} = 2,{\text{ }}{u_1} = 2. Express your solution in the form {2^{f(n)}}\cos \left( {g(n)\pi } \right), where the functions f and g map \mathbb{N} to \mathbb{R}.

Markscheme

(a)     (i)     use of auxiliary equation or recognition of a geometric sequence     (M1)

          {u_n} = {( - 2)^n}{u_0} or = {\text{A}}{( - 2)^n} or {u_1}{( - 2)^{n - 1}}     A1

          (ii)     substitute suggested solution     M1

          An + B + 2\left( {A(n - 1) + B} \right) = 3n - 2     A1

          equate coefficients of powers of n and attempt to solve     (M1)

          A = 1,{\text{ }}B = 0     A1

          (so particular solution is {u_n} = n)

          (iii)     use of general solution = particular solution + homogeneous solution     (M1)

          {u_n} = {\text{C}}{( - 2)^2} + n     A1

          attempt to find C using {u_1} = 7     M1

          {u_n} =  - 3{( - 2)^n} + n     A1

[10 marks]

 

(b)     the auxiliary equation is {r^2} - 2r + 2 = 0     A1

solutions: {r_1},{\text{ }}{r_2} = 1 \pm {\text{i}}     A1

general solution of the recurrence: {u_n} = {\text{A}}{(1 + {\text{i}})^n} + {\text{B}}{(1 - {\text{i}})^n} or trig form     A1

attempt to impose initial conditions     M1

A = B = 1 or corresponding constants for trig form     A1

{u_n} = {2^{\left( {\frac{n}{2} + 1} \right)}} \times \cos \left( {\frac{{n\pi }}{4}} \right)     A1A1

[7 marks]

 

Total [17 marks]

Examiners report

[N/A]

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.11 » Recurrence relations. Initial conditions, recursive definition of a sequence.

View options