User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.3dm.hl.TZ0.1
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term State Question number 1 Adapted from N/A

Question

Consider the following weighted graph G.

State what feature of G ensures that G has an Eulerian trail.

[1]
a.i.

State what feature of G ensures that G does not have an Eulerian circuit.

[1]
a.ii.

Write down an Eulerian trail in G.

[2]
b.

State the Chinese postman problem.

[2]
c.i.

Starting and finishing at B, find a solution to the Chinese postman problem for G.

[3]
c.ii.

Calculate the total weight of the solution.

[1]
c.iii.

Markscheme

G has an Eulerian trail because it has (exactly) two vertices (B and F) of odd degree      R1

[1 mark]

a.i.

G does not have an Eulerian circuit because not all vertices are of even degree      R1

[1 mark]

a.ii.

for example BAEBCEFCDF      A1A1

Note: Award A1 for start/finish at B/F, A1 for the middle vertices.

[2 marks]

b.

to determine the shortest route (walk) around a weighted graph      A1

using each edge (at least once, returning to the starting vertex)      A1

Note: Correct terminology must be seen. Do not accept trail, path, cycle or circuit.

[2 marks]

c.i.

we require the Eulerian trail in (b), (weight = 65)     (M1)

and the minimum walk FEB (15)     A1

for example BAEBCEFCDFEB    A1

Note: Accept EB added to the end or FE added to the start of their answer in (b) in particular for follow through.

[3 marks]

c.ii.

total weight is (65 + 15=)80      A1

[1 mark]

c.iii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
c.iii.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.8 » Walks, trails, paths, circuits, cycles.

View options