User interface language: English | Español

Date May 2017 Marks available 1 Reference code 17M.3ca.hl.TZ0.5
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Show that and Hence Question number 5 Adapted from N/A

Question

Consider the curve \(y = \frac{1}{x},{\text{ }}x > 0\).

Let \({U_n} = \sum\limits_{r = 1}^n {\frac{1}{r} - \ln n} \).

By drawing a diagram and considering the area of a suitable region under the curve, show that for \(r > 0\),

\[\frac{1}{{r + 1}} < \ln \left( {\frac{{r + 1}}{r}} \right) < \frac{1}{r}.\]

[4]
a.

Hence, given that \(n\) is a positive integer greater than one, show that

\(\sum\limits_{r = 1}^n {\frac{1}{r} > \ln (1 + n)} \);

[3]
b.i.

Hence, given that \(n\) is a positive integer greater than one, show that

\(\sum\limits_{r = 1}^n {\frac{1}{r} < 1 + \ln n} \).

[3]
b.ii.

Hence, given that \(n\) is a positive integer greater than one, show that

\({U_n} > 0\);

[1]
c.i.

Hence, given that \(n\) is a positive integer greater than one, show that

\({U_{n + 1}} < {U_n}\).

[3]
c.ii.

Explain why these two results prove that \(\{ {U_n}\} \) is a convergent sequence.

[1]
d.

Markscheme

M17/5/MATHL/HP3/ENG/TZ0/SE/M/05.a

A1

 

Note:     Curve, both rectangles and correct \(x\)values required.

 

area of rectangles \(\frac{1}{r}\) and \(\frac{1}{{1 + r}}\)     A1

 

Note:     Correct values on the \(y\)-axis are sufficient evidence for this mark if not otherwise indicated.

 

in the above diagram, the area below the curve between \(x = r\) and \(x = r + 1\) is between the areas of the larger and smaller rectangle

or \(\frac{1}{{r + 1}} < \int\limits_r^{r + 1} {\frac{{{\text{d}}x}}{x} < \frac{1}{r}} \)     (R1)

integrating, \(\int_r^{r + 1} {\frac{{{\text{d}}x}}{x} = [\ln x]_r^{r + 1}\,\,\,\left( { = \ln (r + 1) - \ln (r)} \right)} \)     A1

\(\frac{1}{{r + 1}} < \ln \left( {\frac{{r + 1}}{r}} \right) < \frac{1}{r}\)     AG

[4 marks]

a.

summing the right-hand part of the above inequality from \(r = 1\) to \(r = n\),

\(\sum\limits_{r = 1}^n {\frac{1}{r}} > \sum\limits_{r = 1}^n {\ln \left( {\frac{{r + 1}}{r}} \right)} \)     M1

\( = \ln \left( {\frac{2}{1}} \right) + \ln \left( {\frac{3}{2}} \right) + \ldots + \ln \left( {\frac{n}{{n - 1}}} \right) + \ln \left( {\frac{{n + 1}}{n}} \right)\)     (A1)

EITHER

\( = \ln \left( {\frac{2}{1} \times \frac{3}{2} \times \ldots \times \frac{n}{{n - 1}} \times \frac{{n + 1}}{n}} \right)\)     A1

OR

\(\ln 2 - \ln 1 + \ln 3 - \ln 2 + \ldots + \ln (n + 1) - \ln (n)\)     A1

\( = \ln (n + 1)\)     AG

[3 marks]

b.i.

\(\sum\limits_{r = 1}^n {\frac{1}{r} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} < 1 + \ln \left( {\frac{2}{1}} \right) + \ln \left( {\frac{3}{2}} \right) + \ldots + \ln \left( {\frac{n}{{n - 1}}} \right)} \)     M1A1A1

\(\left( {1 + \sum\limits_{r = 1}^{n - 1} {\frac{1}{{r + 1}} < 1 + \sum\limits_{r = 1}^{n - 1} {\ln \left( {\frac{{r + 1}}{r}} \right)} } } \right)\)

 

Note:     M1 is for using the correct inequality from (a), A1 for both sides beginning with 1, A1 for completely correct expression.

 

Note:     The 1 might be added after the sums have been calculated.

 

\( = 1 + \ln n\)     AG

[3 marks]

b.ii.

from (b)(i) \({U_n} > \ln (1 + n) - \ln n > 0\)     A1

 

[1 mark]

c.i.

\({U_{n + 1}} - {U_n} = \sum\limits_{r = 1}^{n + 1} {\frac{1}{r} - \ln (n + 1) - \sum\limits_{r = 1}^n {\frac{1}{r} + \ln n} } \)     M1

\( = \frac{1}{{n + 1}} - \ln \left( {\frac{{n + 1}}{n}} \right)\)     A1

\( < 0\) (using the result proved in (a))     A1

\({U_{n + 1}} < {U_n}\)     AG

[3 marks]

c.ii.

it follows from the two results that \(\{ {U_n}\} \) cannot be divergent either in the sense of tending to \( - \infty \) or oscillating therefore it must be convergent     R1

 

Note:     Accept the use of the result that a bounded (monotonically) decreasing sequence is convergent (allow “positive, decreasing sequence”).

 

[1 mark]

d.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Topic 9 - Option: Calculus » 9.4

View options