Date | May 2008 | Marks available | 15 | Reference code | 08M.3ca.hl.TZ1.4 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ1 |
Command term | Show that, Find, and Hence | Question number | 4 | Adapted from | N/A |
Question
The diagram shows part of the graph of \(y = \frac{1}{{{x^3}}}\) together with line segments parallel to the coordinate axes.
(a) Using the diagram, show that \(\frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + \frac{1}{{{6^3}}} + ... < \int_3^\infty {\frac{1}{{{x^3}}}{\text{d}}x < \frac{1}{{{3^3}}} + \frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + ...} \) .
(b) Hence find upper and lower bounds for \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} \).
Markscheme
(a) The area under the curve is sandwiched between the sum of the areas of the lower rectangles and the upper rectangles. M2
Therefore
\(1 \times \frac{1}{{{4^3}}} + 1 \times \frac{1}{{{5^3}}} + 1 \times \frac{1}{{{6^3}}} + ... < \int_3^\infty {\frac{{{\text{d}}x}}{{{x^3}}} < 1 \times \frac{1}{{{3^3}}} + 1 \times \frac{1}{{{4^3}}} + 1 \times \frac{1}{{{5^3}}} + ...} \) A1
which leads to the printed result.
[3 marks]
(b) We note first that
\(\int_3^\infty {\frac{{{\text{d}}x}}{{{x^3}}} = \left[ { - \frac{1}{{2{x^2}}}} \right]_3^\infty = \frac{1}{{18}}} \) M1A1
Consider first
\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} = 1 + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + \left( {\frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + \frac{1}{{{6^3}}} + ...} \right)\) M1A1
\( < 1 + \frac{1}{8} + \frac{1}{{27}} + \frac{1}{{18}}\) M1A1
\( = \frac{{263}}{{216}}{\text{ (1.22)}}\) (which is an upper bound) A1
\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} = 1 + \frac{1}{{{2^3}}} + \left( {\frac{1}{{{3^3}}} + \frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + ...} \right)\) M1A1
\( > 1 + \frac{1}{8} + \frac{1}{{18}}\) M1A1
\( = \frac{{85}}{{72}}\left( {\frac{{255}}{{216}}} \right){\text{ (1.18)}}\) (which is a lower bound) A1
[12 marks]
Total [15 marks]
Examiners report
Many candidates failed to give a convincing argument to establish the inequality. In (b), few candidates progressed beyond simply evaluating the integral.