User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.1.hl.TZ1.12
Level HL only Paper 1 Time zone TZ1
Command term Show that Question number 12 Adapted from N/A

Question

Consider the polynomial \(P\left( z \right) = {z^5} - 10{z^2} + 15z - 6,{\text{ }}z \in \mathbb{C}\).

The polynomial can be written in the form \(P(z) = {(z - 1)^3}({z^2} + bz + c)\).

Consider the function \(q\left( x \right) = {x^5} - 10{x^2} + 15x - 6,{\text{ }}x \in \mathbb{R}\).

Write down the sum and the product of the roots of \(P(z) = 0\).

[2]
a.

Show that \((z - 1)\) is a factor of \(P(z)\).

[2]
b.

Find the value of \(b\) and the value of \(c\).

[5]
c.

Hence find the complex roots of \(P(z) = 0\).

[3]
d.

Show that the graph of \(y = q(x)\) is concave up for \(x > 1\).

[3]
e.i.

Sketch the graph of \(y = q(x)\) showing clearly any intercepts with the axes.

[3]
e.ii.

Markscheme

\({\text{sum}} = 0\)     A1

\({\text{product}} = 6\)     A1

 

[2 marks]

a.

\(P(1) = 1 - 10 + 15 - 6 = 0\)     M1A1

\( \Rightarrow (z - 1)\) is a factor of \(P(z)\)     AG

 

Note:     Accept use of division to show remainder is zero.

 

[2 marks]

b.

METHOD 1

\({(z - 1)^3}\left( {{z^2} + bz + c} \right) = {z^5} - 10{z^2} + 15z - 6\)     (M1)

by inspection \(c = 6\)     A1

\(({z^3} - 3{z^2} + 3z - 1)({z^2} + bz + 6) = {z^5} - 10{z^2} + 15z - 6\)     (M1)(A1)

\(b = 3\)     A1

METHOD 2

\(\alpha \), \(\beta \) are two roots of the quadratic

\(b = - (\alpha + \beta ),{\text{ }}c = \alpha \beta \)     (A1)

from part (a) \(1 + 1 + 1 + \alpha + \beta = 0\)     (M1)

\( \Rightarrow b = 3\)     A1

\(1 \times 1 \times 1 \times \alpha \beta = 6\)     (M1)

\( \Rightarrow c = 6\)     A1

 

Note:     Award FT if \(b = - 7\) following through from their sum \( = 10\).

 

METHOD 3

\(({z^5} - 10{z^2} + 15z - 6) \div (z - 1) = {z^4} + {z^3} + {z^2} - 9z + 6\)     (M1)A1

 

Note:     This may have been seen in part (b).

 

\({z^4} + {z^3} + {z^2} - 9z + 6 \div (z - 1) = {z^3} + 2{z^2} + 3z - 6\)     (M1)

\({z^3} + 2{z^2} + 3z - 6 \div (z - 1) = {z^2} + 3z + 6\)     A1A1

[5 marks]

c.

\({z^2} + 3z + 6 = 0\)     M1

\(z = \frac{{ - 3 \pm \sqrt {9 - 4 \bullet 6} }}{2}\)     M1

\( = \frac{{ - 3 \pm \sqrt { - 15} }}{2}\)

\(z = - \frac{3}{2} \pm \frac{{{\text{i}}\sqrt {15} }}{2}\)     A1

(or \(z = 1\))

 

Notes:     Award the second M1 for an attempt to use the quadratic formula or to complete the square.

Do not award FT from (c).

 

[3 marks]

d.

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 20{x^3} - 20\)     M1A1

for \(x > 1,{\text{ }}20{x^3} - 20 > 0 \Rightarrow \) concave up     R1AG

 

[3 marks]

e.i.

M17/5/MATHL/HP1/ENG/TZ1/B12.e.ii/M

\(x\)-intercept at \((1,{\text{ }}0)\)     A1

\(y\)-intercept at \((0,{\text{ }} - 6)\)     A1

stationary point of inflexion at \((1,{\text{ }}0)\) with correct curvature either side     A1

[3 marks]

e.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.i.
[N/A]
e.ii.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.5
Show 26 related questions

View options