User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.2.hl.TZ1.1
Level HL only Paper 2 Time zone TZ1
Command term Find Question number 1 Adapted from N/A

Question

One root of the equation \({x^2} + ax + b = 0\) is \(2 + 3{\text{i}}\) where \(a,{\text{ }}b \in \mathbb{R}\). Find the value of \(a\) and the value of \(b\).

Markscheme

METHOD 1

substituting

\( - 5 + 12{\text{i}} + a(2 + 3{\text{i}}) + b = 0\)     (A1)

equating real or imaginary parts     (M1)

\(12 + 3a = 0 \Rightarrow a =  - 4\)     A1

\( - 5 + 2a + b = 0 \Rightarrow b = 13\)     A1

METHOD 2

other root is \(2 - 3{\text{i}}\)     (A1)

considering either the sum or product of roots or multiplying factors     (M1)

\(4 =  - a\) (sum of roots) so \(a =  - 4\)     A1

\(13 = b\) (product of roots)     A1

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.8 » Conjugate roots of polynomial equations with real coefficients.

View options