Date | May 2017 | Marks available | 5 | Reference code | 17M.1.hl.TZ1.3 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Solve | Question number | 3 | Adapted from | N/A |
Question
Solve the equation sec2x+2tanx=0, 0⩽.
Markscheme
METHOD 1
use of {\sec ^2}x = {\tan ^2}x + 1 M1
{\tan ^2}x + 2\tan x + 1 = 0
{(\tan x + 1)^2} = 0 (M1)
\tan x = - 1 A1
x = \frac{{3\pi }}{4},{\text{ }}\frac{{7\pi }}{4} A1A1
METHOD 2
\frac{1}{{{{\cos }^2}x}} + \frac{{2\sin x}}{{\cos x}} = 0 M1
1 + 2\sin x\cos x = 0
\sin 2x = - 1 M1A1
2x = \frac{{3\pi }}{2},{\text{ }}\frac{{7\pi }}{2}
x = \frac{{3\pi }}{4},{\text{ }}\frac{{7\pi }}{4} A1A1
Note: Award A1A0 if extra solutions given or if solutions given in degrees (or both).
[5 marks]
Examiners report
[N/A]