User interface language: English | Español

Date May 2017 Marks available 5 Reference code 17M.1.hl.TZ1.3
Level HL only Paper 1 Time zone TZ1
Command term Solve Question number 3 Adapted from N/A

Question

Solve the equation \({\sec ^2}x + 2\tan x = 0,{\text{ }}0 \leqslant x \leqslant 2\pi \).

Markscheme

METHOD 1

use of \({\sec ^2}x = {\tan ^2}x + 1\)     M1

\({\tan ^2}x + 2\tan x + 1 = 0\)

\({(\tan x + 1)^2} = 0\)     (M1)

\(\tan x =  - 1\)     A1

\(x = \frac{{3\pi }}{4},{\text{ }}\frac{{7\pi }}{4}\)     A1A1

METHOD 2

\(\frac{1}{{{{\cos }^2}x}} + \frac{{2\sin x}}{{\cos x}} = 0\)     M1

\(1 + 2\sin x\cos x = 0\)

\(\sin 2x =  - 1\)     M1A1

\(2x = \frac{{3\pi }}{2},{\text{ }}\frac{{7\pi }}{2}\)

\(x = \frac{{3\pi }}{4},{\text{ }}\frac{{7\pi }}{4}\)     A1A1

 

Note:     Award A1A0 if extra solutions given or if solutions given in degrees (or both).

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.2
Show 23 related questions

View options