User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.1.hl.TZ0.10
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 10 Adapted from N/A

Question

Consider two events AA and AA defined in the same sample space.

Given that P(AB)=49, P(B|A)=13P(AB)=49, P(B|A)=13 and P(B|A)=16,

Show that P(AB)=P(A)+P(AB).

[3]
a.

(i)     show that P(A)=13;

(ii)     hence find P(B).

[6]
b.

Markscheme

METHOD 1

P(AB)=P(A)+P(B)P(AB)    M1

=P(A)+P(AB)+P(AB)P(AB)    M1A1

=P(A)+P(AB)    AG

METHOD 2

P(AB)=P(A)+P(B)P(AB)    M1

=P(A)+P(B)P(A|B)×P(B)    M1

=P(A)+(1P(A|B))×P(B)

=P(A)+P(A|B)×P(B)    A1

=P(A)+P(AB)    AG

[3 marks]

a.

(i)     use P(AB)=P(A)+P(AB) and P(AB)=P(B|A)P(A)     (M1)

49=P(A)+16(1P(A))    A1

8=18P(A)+3(1P(A))    M1

P(A)=13    AG

(ii)     METHOD 1

P(B)=P(AB)+P(AB)    M1

=P(B|A)P(A)+P(B|A)P(A)    M1

=13×13+16×23=29    A1

METHOD 2

P(AB)=P(B|A)P(A)P(AB)=13×13=19    M1

P(B)=P(AB)+P(AB)P(A)    M1

P(B)=49+1913=29    A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.3 » Combined events; the formula for P(AB) .

View options