Date | November 2016 | Marks available | 3 | Reference code | 16N.1.hl.TZ0.10 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
Consider two events AA and AA defined in the same sample space.
Given that P(A∪B)=49, P(B|A)=13P(A∪B)=49, P(B|A)=13 and P(B|A′)=16,
Show that P(A∪B)=P(A)+P(A′∩B).
(i) show that P(A)=13;
(ii) hence find P(B).
Markscheme
METHOD 1
P(A∪B)=P(A)+P(B)−P(A∩B) M1
=P(A)+P(A∩B)+P(A′∩B)−P(A∩B) M1A1
=P(A)+P(A′∩B) AG
METHOD 2
P(A∪B)=P(A)+P(B)−P(A∩B) M1
=P(A)+P(B)−P(A|B)×P(B) M1
=P(A)+(1−P(A|B))×P(B)
=P(A)+P(A′|B)×P(B) A1
=P(A)+P(A′∩B) AG
[3 marks]
(i) use P(A∪B)=P(A)+P(A′∩B) and P(A′∩B)=P(B|A′)P(A′) (M1)
49=P(A)+16(1−P(A)) A1
8=18P(A)+3(1−P(A)) M1
P(A)=13 AG
(ii) METHOD 1
P(B)=P(A∩B)+P(A′∩B) M1
=P(B|A)P(A)+P(B|A′)P(A′) M1
=13×13+16×23=29 A1
METHOD 2
P(A∩B)=P(B|A)P(A)⇒P(A∩B)=13×13=19 M1
P(B)=P(A∪B)+P(A∩B)−P(A) M1
P(B)=49+19−13=29 A1
[6 marks]