Date | May 2016 | Marks available | 5 | Reference code | 16M.2.HL.TZ0.11 |
Level | Higher level | Paper | Paper 2 | Time zone | Time zone 0 |
Command term | Estimate and Show that | Question number | 11 | Adapted from | N/A |
Question
An alpha particle with initial kinetic energy 32 MeV is directed head-on at a nucleus of gold-197 \(\left( {{}_{79}^{197}{\rm{Au}}} \right)\).
(i) Show that the distance of closest approach of the alpha particle from the centre of the nucleus is about 7×10−15m.
(ii) Estimate the density of a nucleus of \({}_{79}^{197}{\rm{Au}}\) using the answer to (a)(i) as an estimate of the nuclear radius.
The nucleus of \({}_{79}^{197}{\rm{Au}}\) is replaced by a nucleus of the isotope \({}_{79}^{195}{\rm{Au}}\). Suggest the change, if any, to your answers to (a)(i) and (a)(ii).
Distance of closest approach:
Estimate of nuclear density:
An alpha particle is confined within a nucleus of gold. Using the uncertainty principle, estimate the kinetic energy, in MeV, of the alpha particle.
Markscheme
(i)
32 MeV converted using 32×106×1.6×10–19«=5.12×10–12J»
\(d = \ll \frac{{kQq}}{E} = \frac{{8.99 \times {{10}^9} \times 2 \times 79 \times {{\left( {1.6 \times {{10}^{ - 19}}} \right)}^2}}}{{32 \times {{10}^6} \times 1.6 \times {{10}^{ - 19}}}} = \gg \frac{{8.99 \times {{10}^9} \times 2 \times 79 \times 1.6 \times {{10}^{ - 19}}}}{{32 \times {{10}^6}}}\)
OR 7.102×10-15m
«d≈7×10-15m»
Must see final answer to 2+ SF unless substitution is completely correct with value for k explicit.
Do not allow an approach via \(r = {R_0}{A^{\frac{{\rm{1}}}{{\rm{3}}}}}\).
(ii)
m≈197×1.661×10-27
OR
3.27×10-25kg
\(V = \frac{{4\pi }}{3} \times {\left( {7 \times {{10}^{ - 15}}} \right)^3}\)
OR
1.44×10-42m-3
\(\rho = \ll \frac{m}{V} = \frac{{3.2722 \times {{10}^{ - 25}}}}{{1.4368 \times {{10}^{ - 42}}}} = \gg 2.28 \times {10^{17}} \approx 2 \times {10^{17}}{\rm{kg}}{{\rm{m}}^{ - 3}}\)
Allow working in MeV: 1.28×1047MeVc–2m–3.
Allow ECF from incorrect answers to MP1 or MP2.
Distance of closest approach: charge or number of protons or force of repulsion is the same so distance is the same
Estimate of nuclear density: «\(\rho \propto \frac{A}{{{{\left( {{A^{\frac{1}{3}}}} \right)}^3}}}\) so» density the same
Δx≈7×10–15 m
\(\Delta p \approx \frac{{6.63 \times {{10}^{ - 34}}}}{{4\pi \times 7 \times {{10}^{ - 15}}}} \ll = 7.54 \times {10^{ - 21}}{\rm{Ns}} \gg \)
\(E \approx \ll \frac{{\Delta {p^2}}}{{2m}} = \frac{{{{\left( {7.54 \times {{10}^{ - 21}}} \right)}^2}}}{{2 \times 6.6 \times {{10}^{ - 27}}}} = 4.3 \times {10^{ - 15}}{\rm{J}} = 26897{\rm{eV}} \gg \approx 0.027{\rm{MeV}}\)
Accept Δx≈3.5×10–15m or Δx≈1.4×10–14m leading to E≈0.11MeV or 0.0067MeV.
Answer must be in MeV.