User interface language: English | Español

Date May 2016 Marks available 1 Reference code 16M.2.HL.TZ0.5
Level Higher level Paper Paper 2 Time zone Time zone 0
Command term Outline Question number 5 Adapted from N/A

Question

Outline what is meant by escape speed.

[1]
a.

A probe is launched vertically upwards from the surface of a planet with a speed

\[v = \frac{3}{4}{v_{{\rm{esc}}}}\]

where vesc is the escape speed from the planet. The planet has no atmosphere.

Determine, in terms of the radius of the planet R, the maximum height from the surface of the planet reached by the probe.

[3]
b.

The total energy of a probe in orbit around a planet of mass M is \(E =  - \frac{{GMm}}{{2r}}\) where m is the mass of the probe and r is the orbit radius. A probe in low orbit experiences a small frictional force. Suggest the effect of this force on the speed of the probe.

[3]
c.

Markscheme

speed to reach infinity/zero gravitational field
OR
speed to escape gravitational pull/effect of planet’s gravity

Do not allow reference to leaving/escaping an orbit.
Do not allow “escaping the atmosphere”.

a.

«kinetic energy at take off» =\(\frac{9}{{16}} \times \frac{{GMm}}{R}\)

kinetic energy at take off + «gravitational» potential energy = «gravitational» potential energy at maximum height

OR
\(\frac{9}{{16}} \times \frac{{GMm}}{R} - \frac{{GMm}}{R} =  - \frac{{GMm}}{R}\)

solves for r and subtracts R from answer =\(\frac{{9R}}{7}\)

Award [0] for work that assumes constant g.

b.

energy reduces/lost

radius decreases

speed increases

Do not allow “kinetic energy reduces” for MP1

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Additional higher level (AHL) » Topic 10: Fields » 10.2 – Fields at work
Show 71 related questions

View options