User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.3.hl.TZ1.29
Level HL Paper 3 Time zone TZ1
Command term Calculate Question number 29 Adapted from N/A

Question

Nuclear radiation is dangerous because of its ability to damage cells but it can also be used in nuclear medicine.

Iodine-131 is released in nuclear explosions but is used in scanners for thyroid cancer. The half-life of iodine-131 is 8.02 days.

Yttrium-90 is used in treating certain cancers.

Formulate a nuclear equation for the beta decay of yttrium-90.

[1]
a.

Lutetium-177 is a common isotope used for internal radiation therapy.

Suggest why lutetium-177 is an ideal isotope for the treatment of certain cancers based on the type of radiation emitted.

[1]
b.

Calculate the rate constant, \(\lambda \), in day−1, for the decay of iodine-131 using section 1 of the data booklet.

[1]
c.i.

Calculate the time, in days, for 90% of the sample to decay.

[2]
c.ii.

A breathalyser measures the blood alcohol content from a breath sample. Formulate half-equations for the reactions at the anode (negative electrode) and the cathode (positive electrode) in a fuel cell breathalyser.

[2]
d.

Markscheme

90Y → 90Zr + β

 

Accept β, e or e.
Accept 90Y → 90Zr + β– + v

[1 mark]

a.

beta-radiation/emission AND targets tumour/cancer cells
OR
beta-radiation/emission AND limited damage to healthy cells/tissues
OR
beta-radiation/emission AND produces «small amount of» gamma-rays «for visualizing tumours/monitoring treatment»

[1 mark]

b.

\(\lambda \left( { = \frac{{\ln 2}}{{{t_{\frac{1}{2}}}}} = \frac{{0.693}}{{8.02{\text{ }}day}}} \right) = 8.64 \times {10^{ - 2}}/0.0864\) «day−1»

[1 mark]

c.i.

ALTERNATIVE 1:
«N0 = initial amount = 100%»

N «= 100 – 90» = 10% at time t

«\(\ln \left( {\frac{{100}}{{10}}} \right) = 2.303 = 0.0864t\)»

«\(t = \frac{{2.303}}{{0.0864{\text{ da}}{{\text{y}}^{ - 1}}}} = \)» 26.7 «days»

 

Accept 26.6 or 27 «days»
Award [2] for correct final answer.

 

ALTERNATIVE 2:
«Nt = N0(0.5)n where n = number of half-lives»

10 = 100(0.5)n

«\(\log \left( {\frac{1}{{10}}} \right) = n \times \log \,0.5\)»

«\( - 1 = n\left( { - 0.301} \right)/n = \frac{1}{{0.301}}\)»

«t \( = \frac{1}{{0.301}} \times 8.02 = \)» 26.6 «days»

 

Accept 26.7 or 27 «days»

Award [2] for correct final answer.

[2 marks]

c.ii.

Anode (negative electrode): C2H5OH + H2O → CH3COOH + 4H+ + 4e

Cathode (positive electrode): O2 + 4H+ + 4e → 2H2O

[2 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Options » D: Medicinal chemistry » D.8 Nuclear medicine (HL only)

View options