Date | May 2017 | Marks available | 3 | Reference code | 17M.1.hl.TZ0.15 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 15 | Adapted from | N/A |
Question
The non-zero vectors v1, v2, v3 form an orthogonal set of vectors in \({\mathbb{R}^3}\).
By considering \({\alpha _1}\)v\(_1 + {\alpha _2}\)v\(_2 + {\alpha _3}\)v\(_3 = 0\), show that v\(_1\), v\(_2\), v\(_3\) are linearly independent.
Explain briefly why v\(_1\), v\(_2\), v\(_3\) form a basis for vectors in \({\mathbb{R}^3}\).
Show that the vectors
\[\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right];{\text{ }}\left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ 1 \end{array}} \right];{\text{ }}\left[ {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right]\]
form an orthogonal basis.
Express the vector
\[\left[ {\begin{array}{*{20}{c}} 2 \\ 8 \\ 0 \end{array}} \right]\]
as a linear combination of these vectors.
Markscheme
let \({\alpha _1}\)v\(_1 + {\alpha _2}\)v\(_2 + {\alpha _3}\)v\(_3 = 0\)
take the dot product with v\(_1\) M1
\({\alpha _1}\)v\(_1\) \( \bullet \) v\(_1 + {\alpha _2}\)v\(_2\) \( \bullet \) v\(_1 + {\alpha _3}\)v\(_3\) \( \bullet \) v\(_1 = 0\) A1
because the vectors are orthogonal, v\(_2\) \( \bullet \) v\(_1\) = v\(_3\) \( \bullet \) v\(_1\) = 0 R1
and since v\(_1\) \( \bullet \) v\(_1\) > 0 it follows that \({\alpha _1} = 0\) and similarly, \({\alpha _2} = {\alpha _3} = 0\) R1
so \({\alpha _1}\)v\(_1 + {\alpha _2}\)v\(_2 + {\alpha _3}\)v\(_3 = 0 \Rightarrow {\alpha _1} = {\alpha _2} = {\alpha _3} = 0\) therefore v\(_1\), v\(_2\), v\(_3\), are linearly independent R1AG
[3 marks]
the three vectors form a basis for \({\mathbb{R}^3}\) because they are (linearly) independent R1
[3 marks]
\(\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right] \bullet \left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ 1 \end{array}} \right] = 0;{\text{ }}\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right] \bullet \left[ {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right] = 0;{\text{ }}\left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ 1 \end{array}} \right] \bullet \left[ {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right] = 0\) M1A1
therefore the vectors form an orthogonal basis AG
[??? marks]
let \(\left[ {\begin{array}{*{20}{c}} 2 \\ 8 \\ 0 \end{array}} \right] = \lambda \left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right] + \mu \left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ 1 \end{array}} \right] + v\left[ {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right]\) M1
\(\lambda - \mu + v = 2\)
\(\mu + 2v = 8\)
\(\lambda = \mu - v = 0\) A1
the solution is
\(\left[ {\begin{array}{*{20}{c}} \lambda \\ \mu \\ v \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right]\,\,\,\,\,\left( {\left[ {\begin{array}{*{20}{c}} 2 \\ 8 \\ 0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right] + 2\left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ 1 \end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right]} \right)\) A1
[??? marks]