Date | May 2014 | Marks available | 18 | Reference code | 14M.2.hl.TZ0.4 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Express, Find, Solve, State, and Define | Question number | 4 | Adapted from | N/A |
Question
The matrix A is given by A = \(\left( {\begin{array}{*{20}{c}}1&2&3&4\\3&8&{11}&8\\1&3&4&\lambda \\\lambda &5&7&6\end{array}} \right)\).
(a) Given that \(\lambda = 2\), B = \(\left( \begin{array}{l}2\\4\\\mu \\3\end{array} \right)\) and X = \(\left( \begin{array}{l}x\\y\\z\\t\end{array} \right)\),
(i) find the value of \(\mu \) for which the equations defined by AX = B are consistent and solve the equations in this case;
(ii) define the rank of a matrix and state the rank of A.
(b) Given that \(\lambda = 1\),
(i) show that the four column vectors in A form a basis for the space of four-dimensional column vectors;
(ii) express the vector \(\left( \begin{array}{c}6\\28\\12\\15\end{array} \right)\) as a linear combination of these basis vectors.
Markscheme
(a) (i) using row reduction, M1
\(\left( {\begin{array}{*{20}{c}}1&2&3&4\\3&8&{11}&8\\1&3&4&2\\2&5&7&6\end{array}{\rm{\,\,\,\,\,\,\,\,}}\begin{array}{*{20}{c}}2\\4\\\mu \\3\end{array}} \right)\)
\(\left( {\begin{array}{*{20}{c}}1&2&3&4\\0&2&2&{ - 4}\\0&1&1&{ - 2}\\0&1&1&{ - 2}\end{array}{\rm{\,\,\,\,\,\,\,\,}}\begin{array}{*{20}{c}}2\\{ - 2}\\{\mu - 2}\\{ - 1}\end{array}} \right)\) (A2)
for consistency,
\(\mu - 2 = - 1\) (M1)
\(\mu = 1\) A1
put \(z = \alpha ,{\text{ }}t = \beta \) M1
\(y = - 1 - \alpha + 2\beta ;{\text{ }}x = 4 - \alpha - 8\beta \) A1A1
(ii) the rank of a matrix is the number of independent rows (or columns) A1
\({\text{rank}}\,{\text{(}}\)A\() = 2\) A1
[10 marks]
(b) (i) \({\text{det}}\,{\text{(}}\)A\() = 2\) (M1)A1
since \({\text{det}}\,{\text{(}}\)A\() \ne 0\), the vectors form a basis R1
(ii) let \(\left( \begin{array}{l}6\\28\\12\\15\end{array} \right) = a\left( \begin{array}{l}1\\3\\1\\1\end{array} \right) + b\left( \begin{array}{l}2\\8\\3\\5\end{array} \right) + c\left( \begin{array}{c}3\\11\\4\\7\end{array} \right) + d\left( \begin{array}{l}4\\8\\1\\6\end{array} \right)\) M1
\( = \left( {\begin{array}{*{20}{c}}1&2&3&4\\3&8&{11}&8\\1&3&4&1\\1&5&7&6\end{array}} \right)\left( \begin{array}{l}a\\b\\c\\d\end{array} \right)\)
it follows that
\(\left( \begin{array}{l}a\\b\\c\\d\end{array} \right) = {\left( {\begin{array}{*{20}{c}}1&2&3&4\\3&8&{11}&8\\1&3&4&1\\1&5&7&6\end{array}} \right)^{ - 1}}\left( \begin{array}{l}6\\28\\12\\15\end{array} \right)\)
\(= \left( \begin{array}{c}2\\1\\2\\ - 1\end{array} \right)\)
therefore
\(a = 2\) A1
\(b = 1\) A1
\(c = 2\) A1
\(d = - 1\) A1
\(\left( \begin{array}{l}6\\28\\12\\15\end{array} \right) = 2\left( \begin{array}{l}1\\3\\1\\1\end{array} \right) + \left( \begin{array}{l}2\\8\\3\\5\end{array} \right) + 2\left( \begin{array}{c}3\\11\\4\\7\end{array} \right) - \left( \begin{array}{l}4\\8\\1\\6\end{array} \right)\)
[8 marks]