Date | None Specimen | Marks available | 3 | Reference code | SPNone.1.hl.TZ0.2 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 2 | Adapted from | N/A |
Question
Show that the following vectors form a basis for the vector space R3 .(123);(231);(525)
Express the following vector as a linear combination of the above vectors.(121416)
Markscheme
let {\boldsymbol{A}} = \left| {\begin{array}{*{20}{c}} 1&2&5 \\ 2&3&2 \\ 3&1&5 \end{array}} \right| and consider \det (\boldsymbol{A}) = - 30 (M1)A1
the vectors form a basis because the determinant is non-zero (or because the matrix is non-singular) R1
[3 marks]
let \left( \begin{array}{l} 12\\ 14\\ 16 \end{array} \right) = \lambda \left( \begin{array}{l} 1\\ 2\\ 3 \end{array} \right) + \mu \left( \begin{array}{l} 2\\ 3\\ 1 \end{array} \right) + v\left( \begin{array}{l} 5\\ 2\\ 5 \end{array} \right) M1A1
so that
EITHER
\begin{array}{l} \lambda + 2\mu + 5v = 12\\ 2\lambda + 3\mu + 2v = 14\\ 3\lambda + \mu + 5v = 16 \end{array} M1
OR
\left( {\begin{array}{*{20}{c}} 1&2&5\\ 2&3&2\\ 3&1&5 \end{array}} \right)\left( \begin{array}{l} \lambda \\ \mu \\ v \end{array} \right) = \left( \begin{array}{l} 12\\ 14\\ 16 \end{array} \right) M1
THEN
giving \lambda = 3, \mu = 2, v = 1 (A1)
hence \left( \begin{array}{l} 12\\ 14\\ 16 \end{array} \right) = 3\left( \begin{array}{l} 1\\ 2\\ 3 \end{array} \right) + 2\left( \begin{array}{l} 2\\ 3\\ 1 \end{array} \right) + 1\left( \begin{array}{l} 5\\ 2\\ 5 \end{array} \right) A1
[5 marks]