Date | None Specimen | Marks available | 5 | Reference code | SPNone.1.hl.TZ0.2 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Express | Question number | 2 | Adapted from | N/A |
Question
Show that the following vectors form a basis for the vector space \({\mathbb{R}^3}\) .\[\left( \begin{array}{l}
1\\
2\\
3
\end{array} \right);\left( \begin{array}{l}
2\\
3\\
1
\end{array} \right);\left( \begin{array}{l}
5\\
2\\
5
\end{array} \right)\]
Express the following vector as a linear combination of the above vectors.\[\left( \begin{array}{l}
12\\
14\\
16
\end{array} \right)\]
Markscheme
let \({\boldsymbol{A}} = \left| {\begin{array}{*{20}{c}}
1&2&5 \\
2&3&2 \\
3&1&5
\end{array}} \right|\) and consider \(\det (\boldsymbol{A}) = - 30\) (M1)A1
the vectors form a basis because the determinant is non-zero (or because the matrix is non-singular) R1
[3 marks]
let \(\left( \begin{array}{l}
12\\
14\\
16
\end{array} \right) = \lambda \left( \begin{array}{l}
1\\
2\\
3
\end{array} \right) + \mu \left( \begin{array}{l}
2\\
3\\
1
\end{array} \right) + v\left( \begin{array}{l}
5\\
2\\
5
\end{array} \right)\) M1A1
so that
EITHER
\(\begin{array}{l}
\lambda + 2\mu + 5v = 12\\
2\lambda + 3\mu + 2v = 14\\
3\lambda + \mu + 5v = 16
\end{array}\) M1
OR
\(\left( {\begin{array}{*{20}{c}}
1&2&5\\
2&3&2\\
3&1&5
\end{array}} \right)\left( \begin{array}{l}
\lambda \\
\mu \\
v
\end{array} \right) = \left( \begin{array}{l}
12\\
14\\
16
\end{array} \right)\) M1
THEN
giving \(\lambda = 3\), \(\mu = 2\), \(v = 1\) (A1)
hence \(\left( \begin{array}{l}
12\\
14\\
16
\end{array} \right) = 3\left( \begin{array}{l}
1\\
2\\
3
\end{array} \right) + 2\left( \begin{array}{l}
2\\
3\\
1
\end{array} \right) + 1\left( \begin{array}{l}
5\\
2\\
5
\end{array} \right)\) A1
[5 marks]