Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

User interface language: English | Español

Date None Specimen Marks available 5 Reference code SPNone.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Express Question number 2 Adapted from N/A

Question

Show that the following vectors form a basis for the vector space R3 .(123);(231);(525)

[3]
a.

Express the following vector as a linear combination of the above vectors.(121416)

[5]
b.

Markscheme

let A=|125232315| and consider det     (M1)A1

the vectors form a basis because the determinant is non-zero (or because the matrix is non-singular)     R1

[3 marks]

a.

let \left( \begin{array}{l} 12\\ 14\\ 16 \end{array} \right) = \lambda \left( \begin{array}{l} 1\\ 2\\ 3 \end{array} \right) + \mu \left( \begin{array}{l} 2\\ 3\\ 1 \end{array} \right) + v\left( \begin{array}{l} 5\\ 2\\ 5 \end{array} \right)     M1A1

so that

EITHER

\begin{array}{l} \lambda  + 2\mu  + 5v = 12\\ 2\lambda  + 3\mu  + 2v = 14\\ 3\lambda  + \mu  + 5v = 16 \end{array}     M1

OR

\left( {\begin{array}{*{20}{c}} 1&2&5\\ 2&3&2\\ 3&1&5 \end{array}} \right)\left( \begin{array}{l} \lambda \\ \mu \\ v \end{array} \right) = \left( \begin{array}{l} 12\\ 14\\ 16 \end{array} \right)     M1

THEN

giving \lambda = 3, \mu = 2, v = 1     (A1)

hence \left( \begin{array}{l} 12\\ 14\\ 16 \end{array} \right) = 3\left( \begin{array}{l} 1\\ 2\\ 3 \end{array} \right) + 2\left( \begin{array}{l} 2\\ 3\\ 1 \end{array} \right) + 1\left( \begin{array}{l} 5\\ 2\\ 5 \end{array} \right)     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Linear Algebra » 1.5 » The vector space {\mathbb{R}^n} .

View options