DP Mathematical Studies Questionbank
Testing the validity of simple arguments through the use of truth tables.
Path: |
Description
[N/A]Directly related questions
- 17N.1.sl.TZ0.4c: State whether the statement \(\neg p \Rightarrow \neg (q \vee \neg r)\) is the inverse, the...
- 17N.1.sl.TZ0.4b: Complete the truth table.
- 17N.1.sl.TZ0.4a: Write down in words \((q \vee \neg r) \Rightarrow p\).
- 16N.2.sl.TZ0.6f: Using your answer to part (e), find the value of \(r\) which minimizes \(A\).
- 13M.1.sl.TZ1.6c: Using part (a), determine whether \(\neg p \vee q\) is true or false, for the case where \(x\) is...
- 13M.1.sl.TZ1.6d: Write down a value of \(x\) for which \(\neg p \vee q\) is false.
- SPM.1.sl.TZ0.3c: The argument \(\neg r \Rightarrow (q \vee p)\) is invalid. State the reason for this.
- SPM.1.sl.TZ0.10c: Determine the validity of the argument in (b). Give a reason for your decision.
- 15M.1.sl.TZ2.11d: Consider the compound statement \(s:\) If \(x\) is a multiple of \(6\), then \(x\) is a multiple...
- 15M.2.sl.TZ1.2c: Use your truth table to determine whether the argument in part (a) is valid. Give a reason for...
- 14N.1.sl.TZ0.5c: State whether the converse and the inverse of an implication are logically equivalent. Justify...