Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.2.sl.TZ1.8
Level SL only Paper 2 Time zone TZ1
Command term Find Question number 8 Adapted from N/A

Question

The following table shows values of ln x and ln y.

The relationship between ln x and ln y can be modelled by the regression equation ln y = a ln x + b.

Find the value of a and of b.

[3]
a.

Use the regression equation to estimate the value of y when x = 3.57.

[3]
b.

The relationship between x and y can be modelled using the formula y = kxn, where k ≠ 0 , n ≠ 0 , n ≠ 1.

By expressing ln y in terms of ln x, find the value of n and of k.

[7]
c.

Markscheme

valid approach      (M1)

eg  one correct value

−0.453620, 6.14210

a = −0.454, b = 6.14      A1A1 N3

[3 marks]

a.

correct substitution     (A1)

eg   −0.454 ln 3.57 + 6.14

correct working     (A1)

eg  ln y = 5.56484

261.083 (260.409 from 3 sf)

y = 261, (y = 260 from 3sf)       A1 N3

Note: If no working shown, award N1 for 5.56484.
If no working shown, award N2 for ln y = 5.56484.

[3 marks]

b.

METHOD 1

valid approach for expressing ln y in terms of ln x      (M1)

eg  lny=ln(kxn),ln(kxn)=alnx+b

correct application of addition rule for logs      (A1)

eg  lnk+ln(xn)

correct application of exponent rule for logs       A1

eg  lnk+nlnx

comparing one term with regression equation (check FT)      (M1)

eg  n=a,b=lnk

correct working for k      (A1)

eg  lnk=6.14210,k=e6.14210

465.030

n=0.454,k=465 (464 from 3sf)     A1A1 N2N2

 

METHOD 2

valid approach      (M1)

eg  elny=ealnx+b

correct use of exponent laws for ealnx+b     (A1)

eg  ealnx×eb

correct application of exponent rule for alnx     (A1)

eg  lnxa

correct equation in y      A1

eg  y=xa×eb

comparing one term with equation of model (check FT)      (M1)

eg  k=eb,n=a

465.030

n=0.454,k=465 (464 from 3sf)     A1A1 N2N2

 

METHOD 3

valid approach for expressing ln y in terms of ln x (seen anywhere)      (M1)

eg  lny=ln(kxn),ln(kxn)=alnx+b

correct application of exponent rule for logs (seen anywhere)      (A1)

eg  ln(xa)+b

correct working for b (seen anywhere)      (A1)

eg  b=ln(eb)

correct application of addition rule for logs      A1

eg  ln(ebxa)

comparing one term with equation of model (check FT)     (M1)

eg  k=eb,n=a

465.030

n=0.454,k=465 (464 from 3sf)     A1A1 N2N2

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Statistics and probability » 5.4 » Linear correlation of bivariate data.
Show 28 related questions

View options