User interface language: English | Español

Date November 2018 Marks available 4 Reference code 18N.3.AHL.TZ0.Hsp_1
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Calculate Question number Hsp_1 Adapted from N/A

Question

Two independent random variables X and Y follow Poisson distributions.

Given that E ( X ) = 3 and E ( Y ) = 4 , calculate

E ( 2 X + 7 Y ) .

[2]
a.

Var ( 4 X 3 Y ) .

[3]
b.

E ( X 2 Y 2 ) .

[4]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

E ( 2 X + 7 Y ) = 2 E ( X ) + 7 E ( Y ) = 6 + 28 = 34        (M1)A1

[2 marks]

a.

Var ( X ) = E ( X ) = 3 and Var ( Y ) = E ( Y ) = 4        (R1)

Var ( 4 X 3 Y ) = 16 Var ( X ) + 9 Var ( Y ) = 48 + 36        (M1)

= 84       A1

 

[3 marks]

b.

use of  E ( U 2 ) = Var ( U ) + ( E ( U ) ) 2         (M1)

E ( X 2 ) = 3 + 3 2 E ( Y 2 ) = 4 + 4 2         A1

E ( X 2 Y 2 ) = E ( X 2 ) E ( Y 2 )        (M1)

= −8       A1

 

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4—Statistics and probability » AHL 4.14—Linear transformation of a single RV, E(X) and VAR(X), unbiased estimators
Show 62 related questions
Topic 4—Statistics and probability

View options