User interface language: English | Español

Date November 2018 Marks available 3 Reference code 18N.3.AHL.TZ0.Hsp_1
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Calculate Question number Hsp_1 Adapted from N/A

Question

Two independent random variables XX and YY follow Poisson distributions.

Given that E(X)=3E(X)=3 and E(Y)=4E(Y)=4, calculate

E(2X+7Y)E(2X+7Y).

[2]
a.

Var(4X3Y)(4X3Y).

[3]
b.

E(X2Y2)E(X2Y2).

[4]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

E(2X+7Y)=2E(X)+7E(Y)=6+28=34E(2X+7Y)=2E(X)+7E(Y)=6+28=34       (M1)A1

[2 marks]

a.

Var(X)=E(X)=3(X)=E(X)=3 and Var(Y)=E(Y)=4(Y)=E(Y)=4       (R1)

Var(4X3Y)=16Var(X)+9Var(Y)=48+36Var(4X3Y)=16Var(X)+9Var(Y)=48+36       (M1)

= 84       A1

 

[3 marks]

b.

use of E(U2)=Var(U)+(E(U))2E(U2)=Var(U)+(E(U))2        (M1)

E(X2)=3+32E(X2)=3+32E(Y2)=4+42E(Y2)=4+42        A1

E(X2Y2)=E(X2)E(Y2)E(X2Y2)=E(X2)E(Y2)       (M1)

= −8       A1

 

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4—Statistics and probability » AHL 4.14—Linear transformation of a single RV, E(X) and VAR(X), unbiased estimators
Show 62 related questions
Topic 4—Statistics and probability

View options