User interface language: English | Español

Date May 2019 Marks available 1 Reference code 19M.1.AHL.TZ2.H_2
Level Additional Higher Level Paper Paper 1 Time zone Time zone 2
Command term Find Question number H_2 Adapted from N/A

Question

Three points in three-dimensional space have coordinates A(0, 0, 2), B(0, 2, 0) and C(3, 1, 0).

Find the vector ABAB.

[1]
a.i.

Find the vector ACAC.

[1]
a.ii.

Hence or otherwise, find the area of the triangle ABC.

[4]
b.

Markscheme

AB=(022)AB=022      A1

Note: Accept row vectors or equivalent.

[1 mark]

a.i.

AC=(312)AC=312      A1

Note: Accept row vectors or equivalent.

[1 mark]

a.ii.

METHOD 1

attempt at vector product using ABAB and ACAC.      (M1)

±(2i + 6j +6k)      A1

attempt to use area =12|AB×AC|=12AB×AC       M1

=762(=19)=762(=19)      A1

 

METHOD 2

attempt to use ABAC=|AB||AC|cosθABAC=ABACcosθ       M1

(022)(312)=02+22+(2)232+12+(2)2cosθ022312=02+22+(2)232+12+(2)2cosθ

6=814cosθ6=814cosθ      A1

cosθ=6814=6112cosθ=6814=6112

attempt to use area =12|AB×AC|sinθ=12AB×ACsinθ       M1

=12814136112(=1281476112)=12814136112(=1281476112)

=762(=19)=762(=19)      A1

[4 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.13—Scalar and vector products
Show 37 related questions
Topic 3—Geometry and trigonometry

View options