Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2019 Marks available 5 Reference code 19M.1.AHL.TZ2.H_3
Level Additional Higher Level Paper Paper 1 Time zone Time zone 2
Command term Express Question number H_3 Adapted from N/A

Question

Consider the function f(x)=x46x22x+4xR.

The graph of f is translated two units to the left to form the function g(x).

Express g(x) in the form ax4+bx3+cx2+dx+e where abcdeZ.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

g(x)=f(x+2)(=(x+2)46(x+2)22(x+2)+4)      M1

attempt to expand (x+2)4      M1

(x+2)4=x4+4(2x3)+6(22x2)+4(23x)+24       (A1)

=x4+8x3+24x2+32x+16      A1

g(x)=x4+8x3+24x2+32x+166(x2+4x+4)2x4+4

=x4+8x3+18x2+6x8      A1

Note: For correct expansion of f(x2)=x48x3+18x210x award max  M0M1(A1)A0A1.

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2—Functions » AHL 2.8—Transformations of graphs, composite transformations
Show 50 related questions
Topic 2—Functions

View options