DP Mathematics: Analysis and Approaches Questionbank

SL 2.6—Quadratic function
Description
[N/A]Directly related questions
-
20N.1.SL.TZ0.T_11a:
Write down the other solution of f(x)=k.
-
20N.1.SL.TZ0.T_11b:
Complete the table below placing a tick (✔) to show whether the unknown parameters a and b are positive, zero or negative. The row for c has been completed as an example.
-
20N.1.SL.TZ0.T_11c:
State the values of x for which f(x) is decreasing.
-
EXN.1.SL.TZ0.3:
The following table shows the probability distribution of a discrete random variable X where x=1, 2, 3, 4.
Find the value of k, justifying your answer.
-
21M.1.SL.TZ1.7a:
Show that m=4.
-
21M.1.SL.TZ1.7c:
Find the value of h and the value of k.
-
21M.1.SL.TZ1.7d:
Hence find the values of x where the graph of f is both negative and increasing.
-
21M.1.SL.TZ1.7b:
Find the value of p and the value of q.
-
21M.2.SL.TZ2.5a:
Find the range of f.
-
21M.2.SL.TZ2.3b:
Let Sn denote the sum of the first n terms of the sequence.
Find the maximum value of Sn.
-
21M.2.SL.TZ2.5b:
Given that (g∘f)(x)≤0 for all x∈ℝ, determine the set of possible values for c.
-
21N.1.SL.TZ0.1b:
The function f can be written in the form f(x)=-2(x-h)2+k.
Write down the value of h and the value of k.
-
21N.1.SL.TZ0.1a.i:
find the x-coordinates of the x-intercepts.
-
21N.1.SL.TZ0.7a.ii:
Show that the distance of P from O at this time is 8827 metres.
-
21N.1.SL.TZ0.1a.ii:
find the coordinates of the vertex.
-
21N.1.SL.TZ0.7a.i:
Find the value of t when P reaches its maximum velocity.
-
21N.1.SL.TZ0.7b:
Sketch a graph of v against t, clearly showing any points of intersection with the axes.
-
21N.1.SL.TZ0.7c:
Find the total distance travelled by P.
-
22M.1.SL.TZ1.7a:
Find the value of q.
-
22M.1.SL.TZ1.7b.i:
Write down the value of the discriminant of f′.
-
22M.1.SL.TZ1.7c:
Find the value of the gradient of the graph of f′ at x=0.
-
22M.1.SL.TZ1.7b.ii:
Hence or otherwise, find the value of p.
-
22M.1.SL.TZ2.7a:
Write down the equation of the axis of symmetry.
-
22M.1.SL.TZ2.7b.ii:
Point Q has coordinates (5, 12). Find the value of a.
-
22M.1.SL.TZ2.7b.i:
Write down the values of h and k.
-
22M.1.AHL.TZ2.11c:
Given that (h∘g)(a)=π4, find the value of a.
Give your answer in the form p+q2√r, where p, q, r∈ℤ+.
-
17M.1.SL.TZ1.S_9a:
Find the value of p.
-
17M.1.SL.TZ1.S_9b:
Find the value of a.
-
16N.1.SL.TZ0.S_1b:
(i) Write down the value of h.
(ii) Find the value of k.
-
19N.1.SL.TZ0.S_3a:
Find the value of b.
-
19N.1.SL.TZ0.S_3b:
The graph of f(x)=x2 is transformed to obtain the graph of g.
Describe this transformation.
-
18M.2.AHL.TZ2.H_10d.i:
Find α and β in terms of k.
-
18M.2.AHL.TZ2.H_10a.iii:
Explain why f has no inverse on the given domain.
-
18M.2.AHL.TZ2.H_10b:
Show that g(t)=(1+t1−t)2.
-
18M.2.AHL.TZ2.H_10a.ii:
With reference to your graph, explain why f is a function on the given domain.
-
18M.2.AHL.TZ2.H_10d.ii:
Show that α + β < −2.
-
18M.2.AHL.TZ2.H_10a.iv:
Explain why f is not a function for −3π4⩽x⩽π4.
-
18M.2.AHL.TZ2.H_10c:
Sketch the graph of y=g(t) for t ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.
-
18M.2.AHL.TZ2.H_10a.i:
Sketch the graph of y=f(x) for −5π8⩽x⩽π8.
-
17M.1.AHL.TZ1.H_11a.i:
Express x2+3x+2 in the form (x+h)2+k.