User interface language: English | Español

Date May 2021 Marks available 3 Reference code 21M.1.SL.TZ1.7
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Hence and Find Question number 7 Adapted from N/A

Question

Let fx=mx2-2mx, where x and m. The line y=mx-9 meets the graph of f at exactly one point.

The function f can be expressed in the form fx=4x-px-q, where p,q.

The function f can also be expressed in the form fx=4x-h2+k, where h,k.

Show that m=4.

[6]
a.

Find the value of p and the value of q.

[2]
b.

Find the value of h and the value of k.

[3]
c.

Hence find the values of x where the graph of f is both negative and increasing.

[3]
d.

Markscheme

METHOD 1 (discriminant)

mx2-2mx=mx-9        (M1)

mx2-3mx+9=0

recognizing Δ=0 (seen anywhere)        M1

Δ=-3m2-4m9  (do not accept only in quadratic formula for x)          A1

valid approach to solve quadratic for m        (M1)

9mm-4=0  OR  m=36±362-4×9×02×9

both solutions m=0,4          A1

m0 with a valid reason          R1

the two graphs would not intersect OR 0-9

m=4          AG

 

METHOD 2 (equating slopes)

mx2-2mx=mx-9  (seen anywhere)        (M1)

f'x=2mx-2m          A1

equating slopes, f'x=m  (seen anywhere)          M1

2mx-2m=m

x=32          A1

substituting their x value        (M1)

322m-2m×32=m×32-9

94m-124m=64m-9          A1

-9m4=-9

m=4         AG

 

METHOD 3 (using -b2a)

mx2-2mx=mx-9        (M1)

mx2-3mx+9=0

attempt to find x-coord of vertex using -b2a        (M1)

--3m2m          A1

x=32          A1

substituting their x value        (M1)

322m-3m×32+9=0

94m-92m+9=0          A1

-9m=-36

m=4         AG

 

[6 marks]

a.

4xx-2        (A1)

p=0 and q=2  OR  p=2 and q=0         A1

 

[2 marks]

b.

attempt to use valid approach        (M1)

0+22, --82×4, f1, 8x-8=0  OR  4x2-2x+1-1=4x-12-4

h=1, k=-4         A1A1

 

[3 marks]

c.

EITHER

recognition x=h to 2 (may be seen on sketch)        (M1)

 

OR

recognition that fx<0 and f'x>0        (M1)

 

THEN

1<x<2         A1A1

 

Note: Award A1 for two correct values, A1 for correct inequality signs.

 

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 2—Functions » SL 2.6—Quadratic function
Show 39 related questions
Topic 2—Functions

View options