User interface language: English | Español

Date May 2021 Marks available 4 Reference code 21M.1.SL.TZ2.8
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Hence and Find Question number 8 Adapted from N/A

Question

Consider the function f defined by f(x)=6+6cosx, for 0x4π.

The following diagram shows the graph of y=f(x).

The graph of f touches the x-axis at points A and B, as shown. The shaded region is enclosed by the graph of y=f(x) and the x-axis, between the points A and B.

The right cone in the following diagram has a total surface area of 12π, equal to the shaded area in the previous diagram.

The cone has a base radius of 2, height h, and slant height l.

Find the x-coordinates of A and B.

[3]
a.

Show that the area of the shaded region is 12π.

[5]
b.

Find the value of l.

[3]
c.

Hence, find the volume of the cone.

[4]
d.

Markscheme

6+6cosx=0 (or setting their f'x=0)               (M1)

cosx=-1 (or sinx=0)

x=π, x=3π                  A1A1

 

[3 marks]

a.

attempt to integrate π3π6+6cosxdx               (M1)

=6x+6sinxπ3π                  A1A1

substitute their limits into their integrated expression and subtract               (M1)

=18π+6sin3π-6π+6sinπ

=63π+0-6π+0 =18π-6π                  A1

area=12π                  AG

 

[5 marks]

b.

attempt to substitute into formula for surface area (including base)               (M1)

π22+π2l=12π               (A1)

4π+2πl=12π

2πl=8π

l=4                  A1

 

[3 marks]

c.

valid attempt to find the height of the cone             (M1)

e.g.  22+h2=their l2

h=12 =23               (A1)

attempt to use V=13πr2h with their values substituted             M1

13π2212

volume=4π123=8π33=8π3                  A1

 

[4 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.1—3d space, volume, angles, distance, midpoints
Show 73 related questions
Topic 3— Geometry and trigonometry

View options