Processing math: 100%

User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.1.SL.TZ1.8
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Solve Question number 8 Adapted from N/A

Question

Let y=lnxx4 for x>0.

Consider the function defined by f(x)lnxx4 for x>0 and its graph y=f(x).

Show that dydx=1-4lnxx5.

[3]
a.

The graph of f has a horizontal tangent at point P. Find the coordinates of P.

[5]
b.

Given that f''(x)=20lnx-9x6, show that P is a local maximum point.

[3]
c.

Solve f(x)>0 for x>0.

[2]
d.

Sketch the graph of f, showing clearly the value of the x-intercept and the approximate position of point P.

[3]
e.

Markscheme

attempt to use quotient or product rule        (M1)

dydx=x4(1x)-(lnx)(4x3)(x4)2  OR  (lnx)(-4x-5)+(x-4)(1x)         A1

correct working         A1

=x3(1-4lnx)x8  OR  cancelling x3  OR  -4lnxx5+1x5

=1-4lnxx5         AG

 

[3 marks]

a.

f'(x)=dydx=0        (M1)

1-4lnxx5=0

lnx=14        (A1)

x=e14         A1

substitution of their x to find y        (M1)

y=lne14(e14)4

=14e(=14e-1)         A1

P(e14,14e)

 

[5 marks]

b.

f''(e14)=20lne14-9(e14)6        (M1)

=5-9e1.5  (=-4e1.5)         A1

which is negative         R1

hence P is a local maximum         AG

 

Note: The R1 is dependent on the previous A1 being awarded.

 

[3 marks]

c.

lnx>0        (A1)

x>1        A1

 

[2 marks]

d.

        A1A1A1

 

 

Note: Award A1 for one x-intercept only, located at 1

     A1 for local maximum, P, in approximately correct position
     A1 for curve approaching x-axis as x (including change in concavity).

 

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 2—Functions » SL 2.9—Exponential and logarithmic functions
Topic 2—Functions

View options