User interface language: English | Español

Date November 2018 Marks available 2 Reference code 18N.3.AHL.TZ0.Hsrg_4
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Find Question number Hsrg_4 Adapted from N/A

Question

Consider the functions f g R × R R × R  defined by

f ( ( x , y ) ) = ( x + y , x y ) and  g ( ( x , y ) ) = ( x y , x + y ) .

Find  ( f g ) ( ( x , y ) ) .

[3]
a.i.

Find ( g f ) ( ( x , y ) ) .

[2]
a.ii.

State with a reason whether or not f and g commute.

[1]
b.

Find the inverse of  f .

[3]
c.

Markscheme

( f g ) ( ( x , y ) ) = f ( g ( ( x , y ) ) )   ( = f ( ( x y , x + y ) ) )       (M1)

= ( x y + x + y , x y x y )        A1A1

 

[3 marks]

a.i.

( g f ) ( ( x , y ) ) = g ( f ( ( x , y ) ) )

= g ( ( x + y , x y ) )

= ( ( x + y ) ( x y ) , x + y + x y )

= ( x 2 y 2 , 2 x )        A1A1

 

[2 marks]

a.ii.

no because  f g g f         R1

Note: Accept counter example.

 

[1 mark]

b.

 

f ( ( x , y ) ) = ( a , b ) ( x + y , x y ) = ( a , b )        (M1)

{ x = a + b 2 y = a b 2        (M1)

f 1 ( ( x , y ) ) = ( x + y 2 , x y 2 )         A1

 

[3 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 2—Functions » SL 2.5—Composite functions, identity, finding inverse
Show 49 related questions
Topic 2—Functions

View options