Date | May 2018 | Marks available | 2 | Reference code | 18M.2.HL.TZ1.6 |
Level | Higher level | Paper | Paper 2 | Time zone | 1 |
Command term | Identify | Question number | 6 | Adapted from | N/A |
Question
The radioactive nuclide beryllium-10 (Be-10) undergoes beta minus (β–) decay to form a stable boron (B) nuclide.
The initial number of nuclei in a pure sample of beryllium-10 is N0. The graph shows how the number of remaining beryllium nuclei in the sample varies with time.
An ice sample is moved to a laboratory for analysis. The temperature of the sample is –20 °C.
Identify the missing information for this decay.
On the graph, sketch how the number of boron nuclei in the sample varies with time.
After 4.3 × 106 years,
Show that the half-life of beryllium-10 is 1.4 × 106 years.
Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains 7.6 × 1011 atoms of beryllium-10. The present activity of the sample is 8.0 × 10−3 Bq.
Determine, in years, the age of the sample.
State what is meant by thermal radiation.
Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.
Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample.
The temperature in the laboratory is higher than the temperature of the ice sample. Describe one other energy transfer that occurs between the ice sample and the laboratory.
Markscheme
antineutrino AND charge AND mass number of electron ,
conservation of mass number AND charge ,
Do not accept V.
Accept without subscript e.
[2 marks]
correct shape ie increasing from 0 to about 0.80 N0
crosses given line at 0.50 N0
[2 marks]
ALTERNATIVE 1
fraction of Be = , 12.5%, or 0.125
therefore 3 half lives have elapsed
«≈ 1.4 × 106» «y»
ALTERNATIVE 2
fraction of Be = , 12.5%, or 0.125
leading to λ = 4.836 × 10–7 «y»–1
= 1.43 × 106 «y»
Must see at least one extra sig fig in final answer.
[3 marks]
λ «= » = 4.95 × 10–7 «y–1»
rearranging of A = λN0e–λt to give –λt = ln «= –0.400»
t = «y»
Allow ECF from MP1
[3 marks]
emission of (infrared) electromagnetic/infrared energy/waves/radiation.
[1 mark]
the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein’s Law
so frequency/color depends on temperature
[2 marks]
= 1.1 × 10–5 «m»
Allow ECF from MP1 (incorrect temperature).
[2 marks]
from the laboratory to the sample
conduction – contact between ice and lab surface.
OR
convection – movement of air currents
Must clearly see direction of energy transfer for MP1.
Must see more than just words “conduction” or “convection” for MP2.
[2 marks]