User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Show Question number 3 Adapted from N/A

Question

The relation \(R\) is defined such that \(xRy\) if and only if \(\left| x \right| + \left| y \right| = \left| {x + y} \right|\) for \(x\), \(y\), \(y \in \mathbb{R}\).

Show that \(R\) is reflexive.

[2]
a.i.

Show that \(R\) is symmetric.

[2]
a.ii.

Show, by means of an example, that \(R\) is not transitive.

[4]
b.

Markscheme

(for \(x \in \mathbb{R}\)), \(\left| x \right| + \left| x \right| = 2\left| x \right|\)    A1

and \(\left| x \right| + \left| x \right| = \left| {2x} \right| = 2\left| x \right|\)    A1

hence \(xRx\)

so \(R\) is reflexive    AG

Note: Award A1 for correct verification of identity for \(x\) > 0; A1 for correct verification for \(x\) ≤ 0.

[2 marks]

 

a.i.

if \(xRy \Rightarrow \left| x \right| + \left| y \right| = \left| {x + y} \right|\)

\(\left| x \right| + \left| y \right| = \left| y \right| + \left| x \right|\)    A1

\(\left| {x + y} \right| = \left| {y + x} \right|\)     A1

hence \(yRx\)

so \(R\) is symmetric      AG

[2 marks]

a.ii.

recognising a condition where transitivity does not hold     (M1)

(eg, \(x\) > 0, \(y\) = 0 and \(z\) < 0)

for example, 1\(R\)0 and 0\(R\)(−1)    A1

however \(\left| 1 \right| + \left| { - 1} \right| \ne \left| {1 +  - 1} \right|\)      A1

so 1\(R\)(−1) (for example) is not true      R1

hence \(R\) is not transitive       AG

[4 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.2 » Ordered pairs: the Cartesian product of two sets.

View options