Processing math: 100%

User interface language: English | Español

Date November 2017 Marks available 5 Reference code 17N.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Show that Question number 3 Adapted from N/A

Question

The relation R is defined on R×R such that (x1, y1)R(x2, y2) if and only if x1y1=x2y2.

Show that R is an equivalence relation.

[5]
a.

Determine the equivalence class of R containing the element (1, 2) and illustrate this graphically.

[4]
b.

Markscheme

R is an equivalence relation if

R is reflexive, symmetric and transitive     A1

x1y1=x1y1(x1, y1)R(x1, y1)     A1

so R is reflexive

(x1, y1)R(x2, y2)x1y1=x2y2x2y2=x1y1(x2, y2)R(x1, y1)     A1

so R is symmetric

(x1, y1)R(x2, y2) and (x2, y2)R(x3, y3)x1y1=x2y2 and x2y2=x3y3     M1

x1y1=x3y3(x1, y1)R(x3, y3)    A1

so R is transitive

R is an equivalence relation     AG

 

[5 marks]

a.

(x, y)R(1, 2)     (M1)

the equivalence class is {(x, y)|xy=2}     A1

N17/5/MATHL/HP3/ENG/TZ0/SG/M/03.b

correct graph     A1

(1, 2) indicated on the graph     A1

 

Note:     Award last A1 only if plotted on a curve representing the class.

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.2 » Ordered pairs: the Cartesian product of two sets.

View options