Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.3srg.hl.TZ0.2
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

Consider the sets A = {1, 3, 5, 7, 9} , B = {2, 3, 5, 7, 11} and C = {1, 3, 7, 15, 31} .

Find (AB)(AC).

[3]
a.i.

Verify that A \ C ≠ A.

[2]
a.ii.

Let S be a set containing n elements where nN.

Show that S has 2n subsets.

[3]
b.

Markscheme

EITHER

(AB)(AC)={1,2,3,5,7,9,11}{1,3,5,7,9,15,31}    M1A1

OR

A(BC)={1,3,5,7,9,11}{3,7}     M1A1

OR

BC is contained within A     (M1)A1

THEN

= {1, 3, 5, 7, 9} (= A)     A1

Note: Accept a Venn diagram representation.

 [3 marks]

a.i.

A \ C = {5, 9}     A1

= {15, 31}    A1

so A \ C ≠ A     AG

Note: Accept a Venn diagram representation.

[2 marks]

a.ii.

METHOD 1

if S= then n=0 and the number of subsets of S is given by 20 = 1     A1

if n>0

for every subset of S, there are 2 possibilities for each element xS either x will be in the subset or it will not     R1

so for all n elements there are (2×2××2)2n different choices in forming a subset of S      R1

so S has 2n subsets      AG

Note: If candidates attempt induction, award A1 for case n=0R1 for setting up the induction method (assume P(k) and consider P(k+1) and R1 for showing how the P(k) true implies P(k+1) true).

 

METHOD 2

nk=0(nk) is the number of subsets of S (of all possible sizes from 0 to n)     R1

(1+1)n=nk=0(nk)(1k)(1nk)      M1

2n=nk=0(nk) (= number of subsets of S)     A1

so S has 2n subsets      AG

[3 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.1 » Finite and infinite sets. Subsets.

View options