Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.3ca.hl.TZ0.3
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Write down and Hence Question number 3 Adapted from N/A

Question

Find the value of 41x3dx.

[3]
a.

Illustrate graphically the inequality n=51n3<41x3dx<n=41n3.

[4]
b.

Hence write down a lower bound for n=41n3.

[1]
c.

Find an upper bound for n=41n3.

[3]
d.

Markscheme

41x3dx=limRR41x3dx      (A1)

Note: The above A1 for using a limit can be awarded at any stage.
Condone the use of limx.

Do not award this mark to candidates who use  as the upper limit throughout.

= limR[12x2]R4(=[12x2]4)     M1

=limR(12(R242))

=132     A1

[3 marks]

a.

      A1A1A1A1

A1 for the curve
A1 for rectangles starting at x=4
A1 for at least three upper rectangles
A1 for at least three lower rectangles

Note: Award A0A1 for two upper rectangles and two lower rectangles.

sum of areas of the lower rectangles < the area under the curve < the sum of the areas of the upper rectangles so

n=51n3<41x3dx<n=41n3      AG

[4 marks]

b.

a lower bound is 132     A1

Note: Allow FT from part (a).

[1 mark]

c.

METHOD 1

n=51n3<132    (M1)

164+n=51n3=132+164     (M1)

n=41n3<364, an upper bound      A1

Note: Allow FT from part (a).

 

METHOD 2

changing the lower limit in the inequality in part (b) gives

n=41n3<31x3dx(<n=31n3)     (A1)

n=41n3<limR[12x2]R3     (M1)

n=41n3<118, an upper bound     A1

Note: Condone candidates who do not use a limit.

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 9 - Option: Calculus » 9.4 » The integral as a limit of a sum; lower and upper Riemann sums.

View options