Date | May 2018 | Marks available | 7 | Reference code | 18M.2.hl.TZ2.6 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Use and Prove that | Question number | 6 | Adapted from | N/A |
Question
Use mathematical induction to prove that \({\left( {1 - a} \right)^n} > 1 - na\) for \(\left\{ {n\,{\text{:}}\,n \in {\mathbb{Z}^ + },\,n \geqslant 2} \right\}\) where \(0 < a < 1\).
Markscheme
Let \({{\text{P}}_n}\) be the statement: \({\left( {1 - a} \right)^n} > 1 - na\) for some \({n \in {\mathbb{Z}^ + },\,n \geqslant 2}\) where \(0 < a < 1\) consider the case \(n = 2{\text{:}}\,\,\,{\left( {1 - a} \right)^2} = 1 - 2a + {a^2}\) M1
\( > 1 - 2a\) because \({a^2} < 0\). Therefore \({{\text{P}}_2}\) is true R1
assume \({{\text{P}}_n}\) is true for some \(n = k\)
\({\left( {1 - a} \right)^k} > 1 - ka\) M1
Note: Assumption of truth must be present. Following marks are not dependent on this M1.
EITHER
consider \({\left( {1 - a} \right)^{k + 1}} = \left( {1 - a} \right){\left( {1 - a} \right)^k}\) M1
\( > 1 - \left( {k + 1} \right)a + k{a^2}\) A1
\( > 1 - \left( {k + 1} \right)a \Rightarrow {{\text{P}}_{k + 1}}\) is true (as \(k{a^2} > 0\)) R1
OR
multiply both sides by \(\left( {1 - a} \right)\) (which is positive) M1
\({\left( {1 - a} \right)^{k + 1}} > \left( {1 - ka} \right)\left( {1 - a} \right)\)
\({\left( {1 - a} \right)^{k + 1}} > 1 - \left( {k + 1} \right)a + k{a^2}\) A1
\({\left( {1 - a} \right)^{k + 1}} > 1 - \left( {k + 1} \right)a \Rightarrow {{\text{P}}_{k + 1}}\) is true (as \(k{a^2} > 0\)) R1
THEN
\({{\text{P}}_2}\) is true \({{\text{P}}_k}\) is true \( \Rightarrow {{\text{P}}_{k + 1}}\) is true so \({{\text{P}}_n}\) true for all \(n > 2\) (or equivalent) R1
Note: Only award the last R1 if at least four of the previous marks are gained including the A1.
[7 marks]