Processing math: 100%

User interface language: English | Español

Date None Specimen Marks available 8 Reference code SPNone.1.hl.TZ0.12
Level HL only Paper 1 Time zone TZ0
Command term Prove Question number 12 Adapted from N/A

Question

The function f is defined by f(x)=exsinx .

Show that f(x)=2exsin(x+π2) .

[3]
a.

Obtain a similar expression for f(4)(x) .

[4]
b.

Suggest an expression for f(2n)(x), nZ+, and prove your conjecture using mathematical induction.

[8]
c.

Markscheme

f(x)=exsinx+excosx     A1

f(x)=exsinx+excosx+excosxexsinx     A1

=2excosx     A1

=2exsin(x+π2)     AG

[3 marks]

a.

f(x)=2exsin(x+π2)+2excos(x+π2)     A1

f(4)(x)=2exsin(x+π2)+2excos(x+π2)+2excos(x+π2)2exsin(x+π2)     A1

=4excos(x+π2)     A1

=4exsin(x+π)     A1

[4 marks]

b.

the conjecture is that

f(2n)(x)=2nexsin(x+nπ2)     A1

for n  = 1, this formula gives

f(x)=2exsin(x+π2) which is correct     A1

let the result be true for n = k , (i.e. f(2k)(x)=2kexsin(x+kπ2))     M1

consider f(2k+1)(x)=2kexsin(x+kπ2)+2kexcos(x+kπ2)     M1

f(2(k+1))(x)=2kexsin(x+kπ2)+2kexcos(x+kπ2)+2kexcos(x+kπ2)2kexsin(x+kπ2)     A1

=2k+1excos(x+kπ2)     A1

=2k+1exsin(x+(k+1)π2)     A1

therefore true for n=k true for n=k+1 and since true for n=1

the result is proved by induction.     R1

Note: Award the final R1 only if the two M marks have been awarded.

 

[8 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Core: Algebra » 1.4 » Proof by mathematical induction.

View options