Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.1.hl.TZ1.6
Level HL only Paper 1 Time zone TZ1
Command term Use and Prove that Question number 6 Adapted from N/A

Question

Use the principle of mathematical induction to prove that

1+2(12)+3(12)2+4(12)3++n(12)n1=4n+22n1, where nZ+.

Markscheme

if n=1

LHS=1;RHS=4320=43=1     M1

hence true for n=1

assume true for n=k     M1

Note: Assumption of truth must be present. Following marks are not dependent on the first two M1 marks.

so 1+2(12)+3(12)2+4(12)3++k(12)k1=4k+22k1

if n=k+1

1+2(12)+3(12)2+4(12)3++k(12)k1+(k+1)(12)k

=4k+22k1+(k+1)(12)k      M1A1

finding a common denominator for the two fractions      M1

=42(k+2)2k+k+12k

=42(k+2)(k+1)2k=4k+32k(=4(k+1)+22(k+1)1)     A1

hence if true for n=k then also true for n=k+1, as true for n=1, so true (for all nZ+)     R1

Note: Award the final R1 only if the first four marks have been awarded.

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.4 » Proof by mathematical induction.
Show 24 related questions

View options