Date | May 2018 | Marks available | 7 | Reference code | 18M.1.hl.TZ1.6 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Use and Prove that | Question number | 6 | Adapted from | N/A |
Question
Use the principle of mathematical induction to prove that
\(1 + 2\left( {\frac{1}{2}} \right) + 3{\left( {\frac{1}{2}} \right)^2} + 4{\left( {\frac{1}{2}} \right)^3} + \, \ldots \, + n{\left( {\frac{1}{2}} \right)^{n - 1}} = 4 - \frac{{n + 2}}{{{2^{n - 1}}}}\), where \(n \in {\mathbb{Z}^ + }\).
Markscheme
if \(n = 1\)
\({\text{LHS}} = 1\,{\text{;}}\,\,{\text{RHS}} = 4 - \frac{3}{{{2^0}}} = 4 - 3 = 1\) M1
hence true for \(n = 1\)
assume true for \(n = k\) M1
Note: Assumption of truth must be present. Following marks are not dependent on the first two M1 marks.
so \(1 + 2\left( {\frac{1}{2}} \right) + 3{\left( {\frac{1}{2}} \right)^2} + 4{\left( {\frac{1}{2}} \right)^3} + \, \ldots \, + k{\left( {\frac{1}{2}} \right)^{k - 1}} = 4 - \frac{{k + 2}}{{{2^{k - 1}}}}\)
if \(n = k + 1\)
\(1 + 2\left( {\frac{1}{2}} \right) + 3{\left( {\frac{1}{2}} \right)^2} + 4{\left( {\frac{1}{2}} \right)^3} + \, \ldots \, + k{\left( {\frac{1}{2}} \right)^{k - 1}} + \left( {k + 1} \right){\left( {\frac{1}{2}} \right)^k}\)
\( = 4 - \frac{{k + 2}}{{{2^{k - 1}}}} + \left( {k + 1} \right){\left( {\frac{1}{2}} \right)^k}\) M1A1
finding a common denominator for the two fractions M1
\( = 4 - \frac{{2\left( {k + 2} \right)}}{{{2^k}}} + \frac{{k + 1}}{{{2^k}}}\)
\( = 4 - \frac{{2\left( {k + 2} \right) - \left( {k + 1} \right)}}{{{2^k}}} = 4 - \frac{{k + 3}}{{{2^k}}}\left( { = 4 - \frac{{\left( {k + 1} \right) + 2}}{{{2^{\left( {k + 1} \right) - 1}}}}} \right)\) A1
hence if true for \(n = k\) then also true for \(n = k + 1\), as true for \(n = 1\), so true (for all \(n \in {\mathbb{Z}^ + }\)) R1
Note: Award the final R1 only if the first four marks have been awarded.
[7 marks]