Date | May 2018 | Marks available | 3 | Reference code | 18M.2.hl.TZ2.5 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Express | Question number | 5 | Adapted from | N/A |
Question
Express the binomial coefficient \(\left( \begin{gathered}
3n + 1 \hfill \\
3n - 2 \hfill \\
\end{gathered} \right)\) as a polynomial in \(n\).
Hence find the least value of \(n\) for which \(\left( \begin{gathered}
3n + 1 \hfill \\
3n - 2 \hfill \\
\end{gathered} \right) > {10^6}\).
Markscheme
\(\left( \begin{gathered}
3n + 1 \hfill \\
3n - 2 \hfill \\
\end{gathered} \right) = \frac{{\left( {3n + 1} \right){\text{!}}}}{{\left( {3n - 2} \right){\text{!}}3{\text{!}}}}\) (M1)
\( = \frac{{\left( {3n + 1} \right)3n\left( {3n - 1} \right)}}{{3{\text{!}}}}\) A1
\( = \frac{9}{2}{n^3} - \frac{1}{2}n\) or equivalent A1
[3 marks]
attempt to solve \( = \frac{9}{2}{n^3} - \frac{1}{2}n > {10^6}\) (M1)
\(n > 60.57 \ldots \) (A1)
Note: Allow equality.
\( \Rightarrow n = 61\) A1
[3 marks]