User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ1.11
Level HL only Paper 2 Time zone TZ1
Command term Find Question number 11 Adapted from N/A

Question

Two submarines A and B have their routes planned so that their positions at time t hours, 0 ≤ t < 20 , would be defined by the position vectors rA \( = \left( \begin{gathered}
\,2 \hfill \\
\,4 \hfill \\
- 1 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
- 1 \hfill \\
\,1 \hfill \\
- 0.15 \hfill \\
\end{gathered} \right)\) and rB \( = \left( \begin{gathered}
\,0 \hfill \\
\,3.2 \hfill \\
- 2 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
- 0.5 \hfill \\
\,1.2 \hfill \\
\,0.1 \hfill \\
\end{gathered} \right)\) relative to a fixed point on the surface of the ocean (all lengths are in kilometres).

To avoid the collision submarine B adjusts its velocity so that its position vector is now given by

rB \( = \left( \begin{gathered}
\,0 \hfill \\
\,3.2 \hfill \\
- 2 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
- 0.45 \hfill \\
\,1.08 \hfill \\
\,0.09 \hfill \\
\end{gathered} \right)\).

Show that the two submarines would collide at a point P and write down the coordinates of P.

[4]
a.

Show that submarine B travels in the same direction as originally planned.

[1]
b.i.

Find the value of t when submarine B passes through P.

[2]
b.ii.

Find an expression for the distance between the two submarines in terms of t.

[5]
c.i.

Find the value of t when the two submarines are closest together.

[2]
c.ii.

Find the distance between the two submarines at this time.

[1]
c.iii.

Markscheme

rA rB        (M1)

2 − t = − 0.5t ⇒ t = 4       A1

checking t = 4 satisfies 4 + t = 3.2 + 1.2t and − 1 − 0.15t = − 2 + 0.1t      R1

P(−2, 8, −1.6)      A1

Note: Do not award final A1 if answer given as column vector.

[4 marks]

a.

\(0.9 \times \left( \begin{gathered}
- 0.5 \hfill \\
\,1.2 \hfill \\
\,0.1 \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
- 0.45 \hfill \\
\,1.08 \hfill \\
\,0.09 \hfill \\
\end{gathered} \right)\)     A1

Note: Accept use of cross product equalling zero.

hence in the same direction      AG

[1 mark]

b.i.

\(\left( \begin{gathered}
\, - 0.45t \hfill \\
3.2 + 1.08t \hfill \\
- 2 + 0.09t \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
- 2 \hfill \\
\,8 \hfill \\
- 1.6 \hfill \\
\end{gathered} \right)\)      M1

Note: The M1 can be awarded for any one of the resultant equations.

\( \Rightarrow t = \frac{{40}}{9} = 4.44 \ldots \)     A1

[2 marks]

b.ii.

rA − rB = \(\left( \begin{gathered}
\,2 - t \hfill \\
\,4 + t \hfill \\
- 1 - 0.15t \hfill \\
\end{gathered} \right) - \left( \begin{gathered}
\, - 0.45t \hfill \\
3.2 + 1.08t \hfill \\
- 2 + 0.09t \hfill \\
\end{gathered} \right)\)      (M1)(A1)

\( = \left( \begin{gathered}
\,2 - 0.55t \hfill \\
\,0.8 - 0.08t \hfill \\
1 - 0.24t \hfill \\
\end{gathered} \right)\)     (A1)

Note: Accept rA − rB.

distance \(D = \sqrt {{{\left( {2 - 0.55t} \right)}^2} + {{\left( {0.8 - 0.08t} \right)}^2} + {{\left( {1 - 0.24t} \right)}^2}} \)      M1A1

\(\left( { = \sqrt {8.64 - 2.688t + 0.317{t^2}} } \right)\)

[5 marks]

c.i.

minimum when \(\frac{{{\text{d}}D}}{{{\text{d}}t}} = 0\)      (M1)

t = 3.83      A1

[2 marks]

c.ii.

0.511 (km)      A1

[1 mark]

c.iii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
c.iii.

Syllabus sections

Topic 4 - Core: Vectors » 4.4 » Coincident, parallel, intersecting and skew lines; distinguishing between these cases.

View options