Date | May 2014 | Marks available | 5 | Reference code | 14M.1.hl.TZ2.12 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 12 | Adapted from | N/A |
Question
Consider the plane \({\mathit{\Pi} _1}\), parallel to both lines \({L_1}\) and \({L_2}\). Point C lies in the plane \({\mathit{\Pi} _1}\).
The line \({L_3}\) has vector equation \(\boldsymbol{r} = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}k\\1\\ - 1\end{array} \right)\).
The plane \({\mathit{\Pi} _2}\) has Cartesian equation \(x + y = 12\).
The angle between the line \({L_3}\) and the plane \({\mathit{\Pi} _2}\) is 60°.
Given the points A(1, 0, 4), B(2, 3, −1) and C(0, 1, − 2) , find the vector equation of the line \({L_1}\) passing through the points A and B.
The line \({L_2}\) has Cartesian equation \(\frac{{x - 1}}{3} = \frac{{y + 2}}{1} = \frac{{z - 1}}{{ - 2}}\).
Show that \({L_1}\) and \({L_2}\) are skew lines.
Find the Cartesian equation of the plane \({\Pi _1}\).
(i) Find the value of \(k\).
(ii) Find the point of intersection P of the line \({L_3}\) and the plane \({\mathit{\Pi} _2}\).
Markscheme
direction vector \(\overrightarrow {{\rm{AB}}} = \left( \begin{array}{c}1\\3\\ - 5\end{array} \right)\) or \(\overrightarrow {{\rm{BA}}} = \left( \begin{array}{c} - 1\\ - 3\\5\end{array} \right)\) A1
\(\boldsymbol{r} = \left( \begin{array}{l}1\\0\\4\end{array} \right) + t\left( \begin{array}{c}1\\3\\ - 5\end{array} \right)\) or \(\boldsymbol{r} = \left( \begin{array}{c}2\\3\\ - 1\end{array} \right) + t\left( \begin{array}{c}1\\3\\ - 5\end{array} \right)\) or equivalent A1
Note: Do not award final A1 unless ‘\(\boldsymbol{r} = {\text{K}}\)’ (or equivalent) seen.
Allow FT on direction vector for final A1.
[2 marks]
both lines expressed in parametric form:
\({L_1}\):
\(x = 1 + t\)
\(y = 3t\)
\(z = 4 - 5t\)
\({L_2}\):
\(x = 1 + 3s\)
\(y = - 2 + s\) M1A1
\(z = - 2s + 1\)
Notes: Award M1 for an attempt to convert \({L_2}\) from Cartesian to parametric form.
Award A1 for correct parametric equations for \({L_1}\) and \({L_2}\).
Allow M1A1 at this stage if same parameter is used in both lines.
attempt to solve simultaneously for x and y: M1
\(1 + t = 1 + 3s\)
\(3t = - 2 + s\)
\(t = - \frac{3}{4},{\text{ }}s = - \frac{1}{4}\) A1
substituting both values back into z values respectively gives \(z = \frac{{31}}{4}\)
and \(z = \frac{3}{2}\) so a contradiction R1
therefore \({L_1}\) and \({L_1}\) are skew lines AG
[5 marks]
finding the cross product:
\(\left( \begin{array}{c}1\\3\\ - 5\end{array} \right) \times \left( \begin{array}{c}3\\1\\ - 2\end{array} \right)\) (M1)
= – i – 13j – 8k A1
Note: Accept i + 13j + 8k
\( - 1(0) - 13(1) - 8( - 2) = 3\) (M1)
\( \Rightarrow - x - 13y - 8z = 3\) or equivalent A1
[4 marks]
(i) \((\cos \theta = )\frac{{\left( \begin{array}{c}k\\1\\ - 1\end{array} \right) \bullet \left( \begin{array}{l}1\\1\\0\end{array} \right)}}{{\sqrt {{k^2} + 1 + 1} \times \sqrt {1 + 1} }}\) M1
Note: Award M1 for an attempt to use angle between two vectors formula.
\(\frac{{\sqrt 3 }}{2} = \frac{{k + 1}}{{\sqrt {2({k^2} + 2)} }}\) A1
obtaining the quadratic equation
\(4{(k + 1)^2} = 6({k^2} + 2)\) M1
\({k^2} - 4k + 4 = 0\)
\({(k - 2)^2} = 0\)
\(k = 2\) A1
Note: Award M1A0M1A0 if \(\cos 60^\circ \) is used \((k = 0{\text{ or }}k = - 4)\).
(ii) \(r = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}2\\1\\ - 1\end{array} \right)\)
substituting into the equation of the plane \({\Pi _2}\):
\(3 + 2\lambda + \lambda = 12\) M1
\(\lambda = 3\) A1
point P has the coordinates:
(9, 3, –2) A1
Notes: Accept 9i + 3j – 2k and \(\left( \begin{array}{l}9\\3\\- 2\end{array} \right)\).
Do not allow FT if two values found for k.
[7 marks]