User interface language: English | Español

Date November 2017 Marks available 4 Reference code 17N.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Determine Question number 3 Adapted from N/A

Question

The relation R is defined on \(\mathbb{R} \times \mathbb{R}\) such that \(({x_1},{\text{ }}{y_1})R({x_2},{\text{ }}{y_2})\) if and only if \({x_1}{y_1} = {x_2}{y_2}\).

Show that R is an equivalence relation.

[5]
a.

Determine the equivalence class of R containing the element \((1,{\text{ }}2)\) and illustrate this graphically.

[4]
b.

Markscheme

R is an equivalence relation if

R is reflexive, symmetric and transitive     A1

\({x_1}{y_1} = {x_1}{y_1} \Rightarrow ({x_1},{\text{ }}{y_1})R({x_1},{\text{ }}{y_1})\)     A1

so R is reflexive

\(({x_1},{\text{ }}{y_1})R({x_2},{\text{ }}{y_2}) \Rightarrow {x_1}{y_1} = {x_2}{y_2} \Rightarrow {x_2}{y_2} = {x_1}{y_1} \Rightarrow ({x_2},{\text{ }}{y_2})R({x_1},{\text{ }}{y_1})\)     A1

so R is symmetric

\(({x_1},{\text{ }}{y_1})R({x_2},{\text{ }}{y_2})\) and \(({x_2},{\text{ }}{y_2})R({x_3},{\text{ }}{y_3}) \Rightarrow {x_1}{y_1} = {x_2}{y_2}\) and \({x_2}{y_2} = {x_3}{y_3}\)     M1

\( \Rightarrow {x_1}{y_1} = {x_3}{y_3} \Rightarrow ({x_1},{\text{ }}{y_1})R({x_3},{\text{ }}{y_3})\)    A1

so R is transitive

R is an equivalence relation     AG

 

[5 marks]

a.

\((x,{\text{ }}y)R(1,{\text{ }}2)\)     (M1)

the equivalence class is \(\{ (x,{\text{ }}y)|xy = 2\} \)     A1

N17/5/MATHL/HP3/ENG/TZ0/SG/M/03.b

correct graph     A1

\((1,{\text{ }}2)\) indicated on the graph     A1

 

Note:     Award last A1 only if plotted on a curve representing the class.

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.2
Show 40 related questions

View options