User interface language: English | Español

Date November 2017 Marks available 3 Reference code 17N.3ca.hl.TZ0.3
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Use and Show that Question number 3 Adapted from N/A

Question

Let \(S = \sum\limits_{n = 1}^\infty  {\frac{{{{(x - 3)}^n}}}{{{n^2} + 2}}} \).

Use the limit comparison test to show that the series \(\sum\limits_{n = 1}^\infty  {\frac{1}{{{n^2} + 2}}} \) is convergent.

[3]
a.

Find the interval of convergence for \(S\).

[9]
b.

Markscheme

\(\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{{{n^2} + 2}}}}{{\frac{1}{{{n^2}}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{n^2}}}{{{n^2} + 2}} = \left( {\mathop {\lim }\limits_{n \to \infty } \left( {1 - \frac{2}{{{n^2} + 2}}} \right)} \right)\)     M1

\( = 1\)     A1

since \(\sum\limits_{n = 1}^\infty  {\frac{1}{{{n^2}}}} \) converges (a \(p\)-series with \(p = 2\))     R1

by limit comparison test, \(\sum\limits_{n = 1}^\infty  {\frac{1}{{{n^2} + 2}}} \) also converges     AG

 

Notes:     The R1 is independent of the A1.

 

[3 marks]

a.

applying the ratio test \(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{(x - 3)}^{n + 1}}}}{{{{(n + 1)}^2} + 2}} \times \frac{{{n^2} + 2}}{{{{(x - 3)}^n}}}} \right|\)     M1A1

\( = \left| {x - 3} \right|{\text{ }}\left( {{\text{as }}\mathop {\lim }\limits_{n \to \infty } \frac{{({n^2} + 2)}}{{{{(n + 1)}^2} + 2}} = 1} \right)\)     A1

converges if \(\left| {x - 3} \right| < 1\) (converges for \(2 < x < 4\))     M1

considering endpoints \(x = 2\) and \(x = 4\)     M1

when \(x = 4\), series is \(\sum\limits_{n = 1}^\infty  {\frac{1}{{{n^2} + 2}}} \), convergent from (a)     A1

when \(x = 2\), series is \(\sum\limits_{n = 1}^\infty  {\frac{{{{( - 1)}^n}}}{{{n^2} + 2}}} \)     A1

 

EITHER

\(\sum\limits_{n = 1}^\infty  {\frac{1}{{{n^2} + 2}}} \) is convergent therefore \(\sum\limits_{n = 1}^\infty  {\frac{{{{( - 1)}^n}}}{{{n^2} + 2}}} \) is (absolutely) convergent     R1

OR

\(\frac{1}{{{n^2} + 2}}\) is a decreasing sequence and \(\mathop {\lim }\limits_{n \to \infty } \frac{1}{{{n^2} + 2}} = 0\) so series converges by the alternating series test     R1

 

THEN

interval of convergence is \(2 \leqslant x \leqslant 4\)     A1

 

Note:     The final A1 is dependent on previous A1s – ie, considering correct series when \(x = 2\) and \(x = 4\) and on the final R1.

 

[9 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.2
Show 40 related questions

View options