Date | November 2017 | Marks available | 3 | Reference code | 17N.3ca.hl.TZ0.3 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Use and Show that | Question number | 3 | Adapted from | N/A |
Question
Let \(S = \sum\limits_{n = 1}^\infty {\frac{{{{(x - 3)}^n}}}{{{n^2} + 2}}} \).
Use the limit comparison test to show that the series \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \) is convergent.
Find the interval of convergence for \(S\).
Markscheme
\(\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{{{n^2} + 2}}}}{{\frac{1}{{{n^2}}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{n^2}}}{{{n^2} + 2}} = \left( {\mathop {\lim }\limits_{n \to \infty } \left( {1 - \frac{2}{{{n^2} + 2}}} \right)} \right)\) M1
\( = 1\) A1
since \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges (a \(p\)-series with \(p = 2\)) R1
by limit comparison test, \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \) also converges AG
Notes: The R1 is independent of the A1.
[3 marks]
applying the ratio test \(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{(x - 3)}^{n + 1}}}}{{{{(n + 1)}^2} + 2}} \times \frac{{{n^2} + 2}}{{{{(x - 3)}^n}}}} \right|\) M1A1
\( = \left| {x - 3} \right|{\text{ }}\left( {{\text{as }}\mathop {\lim }\limits_{n \to \infty } \frac{{({n^2} + 2)}}{{{{(n + 1)}^2} + 2}} = 1} \right)\) A1
converges if \(\left| {x - 3} \right| < 1\) (converges for \(2 < x < 4\)) M1
considering endpoints \(x = 2\) and \(x = 4\) M1
when \(x = 4\), series is \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \), convergent from (a) A1
when \(x = 2\), series is \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{{{n^2} + 2}}} \) A1
EITHER
\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \) is convergent therefore \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{{{n^2} + 2}}} \) is (absolutely) convergent R1
OR
\(\frac{1}{{{n^2} + 2}}\) is a decreasing sequence and \(\mathop {\lim }\limits_{n \to \infty } \frac{1}{{{n^2} + 2}} = 0\) so series converges by the alternating series test R1
THEN
interval of convergence is \(2 \leqslant x \leqslant 4\) A1
Note: The final A1 is dependent on previous A1s – ie, considering correct series when \(x = 2\) and \(x = 4\) and on the final R1.
[9 marks]