User interface language: English | Español

Date May 2014 Marks available 12 Reference code 14M.3ca.hl.TZ0.3
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find Question number 3 Adapted from N/A

Question

Each term of the power series \(\frac{1}{{1 \times 2}} + \frac{1}{{4 \times 5}}x + \frac{1}{{7 \times 8}}{x^2} + \frac{1}{{10 \times 11}}{x^3} +  \ldots \) has the form \(\frac{1}{{b(n) \times c(n)}}{x^n}\), where \(b(n)\) and \(c(n)\) are linear functions of \(n\).

(a)     Find the functions \(b(n)\) and \(c(n)\).

(b)     Find the radius of convergence.

(c)     Find the interval of convergence.

Markscheme

(a)     \(b(n) = 3n + 1\)     A1

\(c(n) = 3n + 2\)     A1

 

Note: \(b(n)\) and \(c(n)\) may be reversed.

 

[2 marks]

(b)     consider the ratio of the \({(n + 1)^{{\text{th}}}}\) and \({n^{{\text{th}}}}\) terms:     M1

\(\frac{{3n + 1}}{{3n + 4}} \times \frac{{3n + 2}}{{3n + 5}} \times \frac{{{x^{n + 1}}}}{{{x^n}}}\)     A1

\(\mathop {{\text{lim}}}\limits_{n \to 0}  \frac{{3n + 1}}{{3n + 4}} \times \frac{{3n + 2}}{{3n + 5}} \times \frac{{{x^{n + 1}}}}{{{x^n}}}x\)     A1

radius of convergence: \(R = 1\)     A1

[4 marks]

(c)     any attempt to study the series for \(x = -1\) or \(x = 1\)     (M1)

converges for \(x = 1\) by comparing with p-series \(\sum {\frac{1}{{{n^2}}}} \)     R1

attempt to use the alternating series test for \(x = -1\)     (M1)

 

Note: At least one of the conditions below needs to be attempted for M1.

 

\(\left| {{\text{terms}}} \right| \approx \frac{1}{{9{n^2}}} \to 0\) and terms decrease monotonically in absolute value     A1

series converges for \(x = -1\)     R1

interval of convergence: \(\left[ { - 1,{\text{ 1}}} \right]\)     A1

 

Note: Award the R1s only if an attempt to corresponding correct test is made;

     award the final A1 only if at least one of the R1s is awarded;

     Accept study of absolute convergence at end points.

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 9 - Option: Calculus » 9.2 » Power series: radius of convergence and interval of convergence. Determination of the radius of convergence by the ratio test.

View options