User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.3sp.hl.TZ0.2
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Give and Find Question number 2 Adapted from N/A

Question

The continuous random variable \(X\) has cumulative distribution function \(F\) given by \[F(x) = \left\{ {\begin{array}{*{20}{l}} {0,}&{x < 0} \\ {x{{\text{e}}^{x - 1}},}&{0 \leqslant x \leqslant 1.} \\ {1,}&{x > 2} \end{array}} \right.\]

Determine \(P(0.25 \leqslant X \leqslant 0.75)\);

[2]
a.i.

Determine the median of \(X\).

[2]
a.ii.

Show that the probability density function \(f\) of \(X\) is given, for \(0 \leqslant x \leqslant 1\), by

\[f(x) = (x + 1){{\text{e}}^{x - 1}}.\]

[2]
b.i.

Hence determine the mean and the variance of \(X\).

[4]
b.ii.

State the central limit theorem. 

[1]
c.i.

A random sample of 100 observations is obtained from the distribution of \(X\). If \(\bar X\) denotes the sample mean, use the central limit theorem to find an approximate value of \(P(\bar X > 0.65)\). Give your answer correct to two decimal places.

[3]
c.ii.

Markscheme

\(P(0.25 \leqslant X \leqslant 0.75) = F(0.75) - F(0.25)\)     (M1)

\( = 0.466\)     A1

 

Note:     Accept any answer that rounds correctly to 0.466.

 

[2 marks]

a.i.

the median \(m\) satisfies \(F(m) = 0.5\)     (M1)

\(m = 0.685\)     A1

 

Note:     Accept any answer that rounds correctly to 0.685.

 

[2 marks]

a.ii.

\(f(x) = F’(x)\)     (M1)

\( = {{\text{e}}^{x - 1}} + x{{\text{e}}^{x - 1}}\)     A1

\( = (x + 1){{\text{e}}^{x - 1}}\)     AG

[2 marks]

b.i.

\(\mu  = \int\limits_0^1 {x\left( {x + 1} \right){{\text{e}}^{x - 1}}{\text{d}}x} \)    (M1)

\( = 0.632\,\,\,\left( {1 - \frac{1}{{\text{e}}}} \right)\)     A1

 

Note:     Accept any answer that rounds correctly to 0.632.

 

\({\sigma ^2} = \int\limits_0^1 {x\left( {x + 1} \right){{\text{e}}^{x - 1}}{\text{d}}x}  - 0.632{ \ldots ^2}\)     (M1)

\( = 0.0719\,\,\,\left( {\frac{6}{{\text{e}}} - 2 - \frac{1}{{{{\text{e}}^2}}}} \right)\)     A1

 

Note:     Accept any answer that rounds correctly to 0.072.

 

[4 marks]

b.ii.

the central limit theorem states that the mean of a large sample from any distribution (with a finite variance) is approximately normally distributed     A1

[1 mark]

c.i.

\(\bar X\) is approximately \(N(0.632 \ldots ,{\text{ }}0.000719 \ldots )\)     (M1)(A1)

\(P(\bar X > 0.65) = 0.25\) (2 dps required)     A1

[3 marks]

 

 

 

c.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.4

View options