Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.3dm.hl.TZ0.1
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Determine Question number 1 Adapted from N/A

Question

Use the Euclidean algorithm to find the greatest common divisor of 264 and 1365.

[5]
a.

Hence, or otherwise, find the general solution of the Diophantine equation

264x1365y=3.

[6]
b.i.

Hence find the general solution of the Diophantine equation

264x1365y=6.

[2]
b.ii.

By expressing each of 264 and 1365 as a product of its prime factors, determine the lowest common multiple of 264 and 1365.

[3]
c.

Markscheme

1365=5×264+45     M1

264=5×45+39     A1

45=1×39+6     A1

39=6×6+3

6=2×3     A1

so gcd is 3

[5 marks]

a.

EITHER

396×6=3     (M1)

396×(4539)=37×396×45=3     (A1)

7×(2645×45)6×45=37×26441×45=3     (A1)

7×26441×(13655×264)=3212×26441×1365=3     (A1)

OR

tracking the linear combinations when applying the Euclidean algorithm (could be displayed in (a))

M17/5/MATHL/HP3/ENG/TZ0/DM/M/01.b.i

THEN

a solution is x=212,y=41 (or equivalent eg x=243,y=47)     (A1)

x=212+455N,y=41+88N (or equivalent) (NZ)     A1

[6 marks]

b.i.

a solution is x=424,y=82 (or equivalent eg x=31, y=6)     (A1)

x=424+455N, y=82+88N(or equivalent) (NZ)     A1

 

Note:     Award A1A0 for x=424+910N, y=82+176N.

 

[2 marks]

b.ii.

264=2×2×2×3×11     A1

1365=3×5×7×13     A1

1cm=2×2×2×3×5×7×11×13=120120     A1

 

Note:     Only award marks if prime factorisation is used.

 

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.2
Show 26 related questions

View options